98%
921
2 minutes
20
With the development of new synthetic methods, 2-vinylfuran (V2F) has become a potential renewable biofuel. In this work, the potential energy surfaces for the V2F unimolecular dissociation reaction, the H-addition reaction, and the H-abstraction reaction were constructed at the G4 level. The temperature- and pressure-dependent rate constants for the relevant reactions on the potential energy surfaces were calculated by solving the master equation based on the transition state theory and Rice-Ramsperger-Kassel-Marcus theory. The results show that the rate constant for the intramolecular H-transfer reaction of V2F with H atoms from the C(5) site to the C(4) site to form 2-vinylfuran-3(2)-carbene, followed by the decomposition to form h145te3o, is the highest. The rate constants for the H-abstraction reaction of V2F with H atoms were the largest at C(6) on the branched chain, followed by C(7), and the rate constants for the H-abstraction reaction at C(3), C(4), and C(5) on the furan ring were not competitive. Negative temperature coefficient effects are observed for the rate constants of the addition reactions of V2F with H atoms at low pressures, with the H-addition rate constant at the C(5) site being the largest. This work not only provides the necessary rate constants for the reaction mechanism of V2F combustion but also provides theoretical guidance for the practical application of furan-based fuels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064205 | PMC |
http://dx.doi.org/10.1021/acsomega.3c09818 | DOI Listing |
Environ Monit Assess
September 2025
Department of Water Resources Study and Research, Water Research Institute, Tehran, Iran.
Small glaciers situated in high mountainous areas are experiencing notable declines, characterized by unprecedented rates of ice loss in recent years. This study investigates the recent changes in surface elevation and mass loss occurring between 2010 and 2023 within the Alamkouh Glacier over three subperiods, one of the biggest glaciers in Iran and the Middle East. These assessments are derived from a combination of high-resolution LiDAR data in 2010 (with a spatial resolution of 20 cm) and multi-temporal surveys conducted using unmanned aerial vehicles (UAVs) in 2018, 2020, and 2023 (with spatial resolutions varied from 10 to 20 cm).
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
This work presents a gas-phase experimental study on the reduction of NO (nitrogen dioxide) to HONO (nitrous acid) by two atmospherically significant volatile organic compounds (VOCs), namely, glycolaldehyde (Gla) and hydroxyacetone (HAc), under a simulated tropospheric condition. FTIR spectroscopic probing reveals that HONO is the only gaseous reduced product of NO in each reaction. The measured data indicate that the reactions in both cases occur in a 2 : 1 stoichiometry with respect to NO and Gla/HAc.
View Article and Find Full Text PDFEco Environ Health
September 2025
Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China.
Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.
View Article and Find Full Text PDFACS Electrochem
September 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Reaction rate coefficients for electron-transfer processes at the electrode-electrolyte interface are commonly estimated by using the Butler-Volmer equation, but their values are inaccurate beyond a few tenths of volts of overpotential. The Marcus-Hush-Chidsey (MHC) formalism yields correct asymptotic behavior of the rate coefficients vs applied overpotential but has complex dependencies on the redox system's intrinsic parameters, which can be difficult to model or measure. In this work, we bridge the two kinetics formalisms to estimate the reorganization energy, one of the important parameters for the MHC formalism, and investigate its dependence on other intrinsic parameters such as activation barriers, electronic coupling strength, and the density of states of the electrode surface.
View Article and Find Full Text PDFJ Exp Biol
September 2025
Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
Dissolved oxygen (DO) dramatically impacts the habitat use of many aquatic animals, particularly for air-breathing animals that rely on 'physical gills' for respiration while submerged. Invertebrates that use bubbles as physical gills directly uptake DO from the water for respiration. However, no vertebrate animals have yet been documented using physical gills.
View Article and Find Full Text PDF