Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current therapeutic approaches for skin cancer face significant challenges, including wound infection, delayed skin regeneration, and tumor recurrence. To overcome these challenges, an injectable adhesive near-infrared (NIR)-responsive hydrogel with time-dependent enhancement in viscosity is developed for combined melanoma therapy and antibacterial wound healing acceleration. The multifunctional hydrogel is prepared through the chemical crosslinking between poly(methyl vinyl ether--maleic acid) and gelatin, followed by the incorporation of CuO nanosheets and allantoin. The synergistic inherent antibacterial potential of CuO nanosheets, the regenerative and smoothing effect of allantoin, the extracellular matrix-mimicking effect of gelatin, and the desirable swelling behavior of the hydrogel results in fast wound recovery after photothermal ablation of the tumor. Additionally, the hydrogel can serve as an alternative to sutures owing to its tissue adhesiveness ability, which can further render it the merits for accelerated repair of abdominal lesions while acting as a biocompatible barrier to prevent peritoneal adhesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11066557PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101062DOI Listing

Publication Analysis

Top Keywords

antibacterial wound
8
wound healing
8
cuo nanosheets
8
hydrogel
5
nir-responsive injectable
4
injectable hydrogel
4
hydrogel cross-linked
4
cross-linked homobifunctional
4
homobifunctional peg
4
peg photo-hyperthermia
4

Similar Publications

Arthrospira platensis (Spirulina) is one the highly valuable cyanobacteria in food and pharmaceutical industry. The intracellular and extracellular polysaccharide (PS) extracts of A. platensis have been exhibited different biological functions.

View Article and Find Full Text PDF

In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.

View Article and Find Full Text PDF

Click chemistry-driven adhesive hydrogel for efficient healing of infected wounds through multistage comprehensive management.

J Mater Chem B

September 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Infected wound treatment remains a critical challenge in clinical medicine. Although existing treatments, like local debridement, antimicrobial agents, and growth factor therapies, have demonstrated certain therapeutic effects, they primarily target only specific stages of wound healing. Moreover, the escalating issue of antibiotic resistance limits their efficacy.

View Article and Find Full Text PDF

Background: Despite the advancements of pharmacological treatments and gauze dressings in the field of skin wound healing, these methods present numerous limitations. Therefore, developing a multifunctional material capable of efficiently promoting skin wound healing is particularly crucial.

Methods: Citric acid (CA)-modified chitosan (CS) loaded with Shikonin (SK) (CA-CS-SK) hydrogel was prepared via the freeze-thaw method.

View Article and Find Full Text PDF

Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.

View Article and Find Full Text PDF