A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Modification of microenvironmental pH of nanoparticles for enhanced solubility and oral bioavailability of poorly water-soluble celecoxib. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to develop a novel pH-modified nanoparticle with improved solubility and oral bioavailability of poorly water-soluble celecoxib by modifying the microenvironmental pH. After assessing the impact of hydrophilic polymers, surfactants and alkaline pH modifiers on the drug solubility, copovidone, sodium lauryl sulfate (SLS) and meglumine were chosen. The optimal formulation of solvent-evaporated, surface-attached and pH-modified nanoparticles composed of celecoxib/copovidone/SLS/meglumine at weight ratios of 1:1:0.2:0, 1:0.375:1.125:0 and 1:1:1:0.2:0.02, respectively, were manufactured using spray drying technique. Their physicochemical characteristics, solubility, dissolution and pharmacokinetics in rats were evaluated compared to the celecoxib powder. The solvent-evaporated and pH-modified nanoparticles converted a crystalline to an amorphous drug, resulting in a spherical shape with a reduced particle size compared to celecoxib powder. However, the surface-attached nanoparticles with insignificant particle size exhibited the unchangeable crystalline drug. All of them gave significantly higher solubility, dissolution, and oral bioavailability than celecoxib powder. Among them, the pH-modified nanoparticles demonstrated the most significant improvement in solubility (approximately 1600-fold) and oral bioavailability (approximately 4-fold) compared to the drug powder owing to the alkaline microenvironment formation effect of meglumine and the conversion to the amorphous drug. Thus, the pH-modified nanoparticle system would be a promising strategy for improving the solubility and oral bioavailability of poorly water-soluble and weakly acidic celecoxib.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.124179DOI Listing

Publication Analysis

Top Keywords

oral bioavailability
20
solubility oral
12
bioavailability water-soluble
12
ph-modified nanoparticles
12
celecoxib powder
12
water-soluble celecoxib
8
ph-modified nanoparticle
8
solubility dissolution
8
compared celecoxib
8
amorphous drug
8

Similar Publications