Engineered Bacteriophage-Based Vaccine Remodels a Tumor Microenvironment and Elicits Potent Antitumor Immunity.

ACS Nano

The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

vaccines (ISVs) utilize the localized delivery of chemotherapeutic agents or radiotherapy to stimulate the release of endogenous antigens from tumors, thereby eliciting systemic and persistent immune activation. Recently, a bioinspired ISV strategy has attracted tremendous attention due to its features such as an immune adjuvant effect and genetic plasticity. M13 bacteriophages are natural nanomaterials with intrinsic immunogenicity, genetic flexibility, and cost-effectiveness for large-scale production, demonstrating the potential for application in cancer vaccines. In this study, we propose an ISV based on the engineered M13 bacteriophage targeting CD40 (M13) for dendritic cell (DC)-targeted immune stimulation, named H-GM-M13. We induce immunogenic cell death and release tumor antigens through local delivery of ()-10-hydroxycamptothecin (HCPT), followed by intratumoral injection of granulocyte-macrophage colony stimulating factor (GM-CSF) and M13 to enhance DC recruitment and activation. We demonstrate that this ISV strategy can result in significant accumulation and activation of DCs at the tumor site, reversing the immunosuppressive tumor microenvironment. In addition, H-GM-M13 can synergize with the PD-1 blockade and induce abscopal effects in cold tumor models. Overall, our study verifies the immunogenicity of the engineered M13 bacteriophage and provides a proof of concept that the engineered M13 phage can function as an adjuvant for ISVs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c00413DOI Listing

Publication Analysis

Top Keywords

engineered m13
12
tumor microenvironment
8
isv strategy
8
m13 bacteriophage
8
m13
6
tumor
5
engineered
4
engineered bacteriophage-based
4
bacteriophage-based vaccine
4
vaccine remodels
4

Similar Publications

Substrate Contribution to Ultrafast Spin Dynamics in 2D van der Waals Magnets.

Phys Rev Lett

August 2025

University of York, School of Physics, Engineering and Technology, York YO10 5DD, United Kingdom.

We propose a model that is able to reproduce the type-II ultrafast demagnetization dynamics observed in 2D magnets. The spin system is coupled to the electronic thermal bath and is treated with atomistic spin dynamics, while the electron and phonon heat baths are described phenomenologically by coupled equations via the two-temperature model. Our proposed two-temperature model takes into account the effect of the heated substrate, which for 2D systems results in a slow demagnetization regime.

View Article and Find Full Text PDF

Motivated by copper's essential role in biology and its wide range of applications in catalytic and synthetic chemistry, this work aims to understand the effect of heteroatom substitution on the overall stability and reactivity of biomimetic Cu(II)-alkylperoxo complexes. In particular, we designed a series of tetracoordinated ligand frameworks based on iso-BPMEN = (,-bis(2-pyridylmethyl)-','-dimethylethane-1,2-diamine) with varying the primary coordination sphere using different donor atoms (N, O, or S) bound to Cu(II). The copper(II) complexes bearing iso-BPMEN and their modified heteroatom-substituted ligands were synthesized and structurally characterized.

View Article and Find Full Text PDF

To ensure safety, pharmaceuticals are rigorously tested for lipopolysaccharide (LPS) contamination, as this can trigger severe immune reactions in patients. Low Endotoxin Recovery (LER), describing the masking of spiked LPS controls in Limulus Amebocyte Lysate (LAL) assays, has been associated with the presence of chelating agents and surfactants in pharmaceutical formulations. The addition of excipients, such as Mg2, have shown the ability to mitigate the effects of LER, however, inconsistencies in various studies regarding the influence of the excipients on LPS aggregate characteristics and LER occurrence hinder a clear understanding of the mechanisms underlying LER.

View Article and Find Full Text PDF

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF

Naturally conductive protein nanowires have inspired efforts to engineer electrical conductivity into synthetic fibrous proteins for the development of bioelectronic materials and devices. A comprehensive analysis of charge transport in these systems requires a combination of various measurement methods, instruments and electrode designs. Measurements under direct current (DC) typically focus on charge transport without distinguishing between charged species, requiring alternating current (AC) and electrochemical methods to probe additional phenomena.

View Article and Find Full Text PDF