98%
921
2 minutes
20
Purpose: Assessment in medical education has changed over time to measure the evolving skills required of current medical practice. Physical and biophysical markers of assessment attempt to use technology to gain insight into medical trainees' knowledge, skills, and attitudes. The authors conducted a scoping review to map the literature on the use of physical and biophysical markers of assessment in medical training.
Materials And Methods: The authors searched seven databases on 1 August 2022, for publications that utilized physical or biophysical markers in the assessment of medical trainees (medical students, residents, fellows, and synonymous terms used in other countries). Physical or biophysical markers included: heart rate and heart rate variability, visual tracking and attention, pupillometry, hand motion analysis, skin conductivity, salivary cortisol, functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). The authors mapped the relevant literature using Bloom's taxonomy of knowledge, skills, and attitudes and extracted additional data including study design, study environment, and novice vs. expert differentiation from February to June 2023.
Results: Of 6,069 unique articles, 443 met inclusion criteria. The majority of studies assessed trainees using heart rate variability ( = 160, 36%) followed by visual attention ( = 143, 32%), hand motion analysis ( = 67, 15%), salivary cortisol ( = 67, 15%), fMRI ( = 29, 7%), skin conductivity ( = 26, 6%), fNIRs ( = 19, 4%), and pupillometry ( = 16, 4%). The majority of studies ( = 167, 38%) analyzed non-technical skills, followed by studies that analyzed technical skills ( = 155, 35%), knowledge ( = 114, 26%), and attitudinal skills ( = 61, 14%). 169 studies (38%) attempted to use physical or biophysical markers to differentiate between novice and expert.
Conclusion: This review provides a comprehensive description of the current use of physical and biophysical markers in medical education training, including the current technology and skills assessed. Additionally, while physical and biophysical markers have the potential to augment current assessment in medical education, there remains significant gaps in research surrounding reliability, validity, cost, practicality, and educational impact of implementing these markers of assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/0142159X.2024.2345269 | DOI Listing |
Adv Sci (Weinh)
September 2025
Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433, China.
Emerging evidence indicates that liquid-liquid phase separation of α-synuclein occurs during the nucleation step of its aggregation, a pivotal step in the onset of Parkinson's disease. Elucidating the molecular determinants governing this process is essential for understanding the pathological mechanisms of diseases and developing therapeutic strategies that target early-stage aggregation. While previous studies have identified residues critical for α-synuclein amyloid formation, the key residues and molecular drivers of its phase separation remain largely unexplored.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Major in Bionano Engineering, School of Bio-Pharmaceutical Convergence, Hanyang University, Ansan, 155-88, Republic of Korea.
Membrane proteins are essential bio-macromolecules involved in numerous critical biological processes and serve as therapeutic targets for a wide range of modern pharmaceuticals. Small amphipathic molecules, called detergents or surfactants, are widely used for the isolation and structural characterization of these proteins. A key requirement for such studies is their ability to maintain membrane protein stability in aqueous solution, a task where conventional detergents often fall short.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Supercomputing Facility for Bioinformatics & Computational Biology (SCFBio) & Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, 110016, India; Department of Chemistry, Indian Institute of Technology, Delhi, 110016, India. Electronic address:
DNA is a dynamic molecule composed of numerous genic and regulatory elements that orchestrate cellular functions. Traditional methods often fail to provide accurate functional genome annotations because they do not effectively account for sequence variability within and across different organisms. To address this, we conducted an extensive genomic physical fingerprinting of ~4.
View Article and Find Full Text PDFMethods
September 2025
Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Universitätsstr. 1, 40225 Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Jülich Ce
Many membrane proteins, including G protein-coupled receptors (GPCRs), are susceptible to denaturation when extracted from their native membrane by detergents. Therefore, alternative methods have been developed, including amphiphilic copolymers that enable the direct extraction of functional membrane proteins along with their surrounding lipids. Among these amphiphilic copolymers, styrene/maleic acid (SMA) and diisobutylene/maleic acid (DIBMA) polymers have been extensively studied.
View Article and Find Full Text PDFLangmuir
September 2025
Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
Photophysical studies on the interaction of small molecules with various forms of nucleic acids are attracting attention nowadays in order to delineate the molecular level mechanism of various biological processes occurring in vivo. Herein, we employed vivid steady-state and time-resolved spectroscopic techniques to elucidate the detailed characterization of the binding interaction of a biologically active cationic dye thioflavin T (ThT) with double and triple helical forms of RNA - A.U duplex and U.
View Article and Find Full Text PDF