MASLD-Related HCC-Update on Pathogenesis and Current Treatment Options.

J Pers Med

Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatocellular carcinoma (HCC) is a common complication of chronic liver diseases and remains a relevant cause of cancer-related mortality worldwide. The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) as a risk factor for hepatocarcinogenesis is on the rise. Early detection of HCC has been crucial in improving the survival outcomes of patients with metabolic dysfunction-associated steatohepatitis (MASH), even in the absence of cirrhosis. Understanding how hepatocarcinogenesis develops in MASH is increasingly becoming a current research focus. Additive risk factors such as type 2 diabetes mellitus (T2DM), genetic polymorphisms, and intestinal microbiota may have specific impacts. Pathophysiological and epidemiological associations between MASH and HCC will be discussed in this review. We will additionally review the available tumor therapies concerning their efficacy in MASH-associated HCC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051566PMC
http://dx.doi.org/10.3390/jpm14040370DOI Listing

Publication Analysis

Top Keywords

metabolic dysfunction-associated
8
masld-related hcc-update
4
hcc-update pathogenesis
4
pathogenesis current
4
current treatment
4
treatment options
4
options hepatocellular
4
hepatocellular carcinoma
4
hcc
4
carcinoma hcc
4

Similar Publications

Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.

View Article and Find Full Text PDF

Therapeutic potentials of mesenchymal stem cells and their extracellular vesicles on liver diseases by modulating mitochondrial function of macrophages.

Int Immunopharmacol

September 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Cen

Macrophages play crucial roles in the progression of liver diseases. Increasing studies have shown that mesenchymal stem cells (MSCs) and their extracellular vesicles (MSC-EVs) could reshape the liver immune microenvironment by regulating the function and phenotype of macrophages, thereby exerting a therapeutic effect on liver diseases. Mitochondria, apart from being the central hub of energy metabolism, also finely regulate macrophage-mediated innate immune responses by modulating reactive oxygen species levels, cell polarization, and cell death.

View Article and Find Full Text PDF

Monitoring ferroptosis in vivo: Iron-driven volatile oxidized lipids as breath biomarkers.

Redox Biol

September 2025

Multi-Omics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Human Biology Microbiome Quantum Research Center, Keio University School of Medicine, Tokyo, Japan. Electronic address:

Ferroptosis, an iron-dependent cell death mechanism characterized by excessive lipid peroxidation, has been implicated in numerous human diseases and organ pathologies. However, current detection methods necessitate invasive tissue sampling to assess lipid peroxidation, making noninvasive detection of ferroptosis in human subjects extremely challenging. In this study, we employed oxidative volatolomics to comprehensively characterize the volatile oxidized lipids (VOLs) produced during ferroptosis.

View Article and Find Full Text PDF

Importance: As obesity rates rise in the US, managing associated metabolic comorbidities presents a growing burden to the health care system. While bariatric surgery has shown promise in mitigating established metabolic conditions, no large studies have quantified the risk of developing major obesity-related comorbidities after bariatric surgery.

Objective: To identify common metabolic phenotypes for patients eligible for bariatric surgery and to estimate crude and adjusted incidence rates of additional metabolic comorbidities associated with bariatric surgery compared with weight management program (WMP) alone.

View Article and Find Full Text PDF

Hic-5 deficiency attenuates MAFLD by inhibiting neutrophils migration via the CXCL1-CXCR2 axis.

J Gastroenterol

September 2025

Department of General Surgery (Hepatopancreatobiliary Surgery), Department of Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.

Background And Aims: Inflammatory cell infiltration in the liver is a hallmark of metabolic dysfunction-associated fatty liver disease (MAFLD). However, the pathological events that trigger the infiltration of inflammatory cells to mediate MAFLD pathogenesis remains poorly understood. This study aims to investigate the function and mechanism of Hic-5 on hepatic inflammation of MAFLD.

View Article and Find Full Text PDF