Proximity proteomics reveals UCH-L1 as an essential regulator of NLRP3-mediated IL-1β production in human macrophages and microglia.

Cell Rep

Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK. E

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome complex is an essential innate immune signaling mechanism. To reveal how human NLRP3 inflammasome assembly and activation are controlled, in particular by components of the ubiquitin system, proximity labeling, affinity purification, and RNAi screening approaches were performed. Our study provides an intricate time-resolved molecular map of different phases of NLRP3 inflammasome activation. Also, we show that ubiquitin C-terminal hydrolase 1 (UCH-L1) interacts with the NACHT domain of NLRP3. Downregulation of UCH-L1 decreases pro-interleukin-1β (IL-1β) levels. UCH-L1 chemical inhibition with small molecules interfered with NLRP3 puncta formation and ASC oligomerization, leading to altered IL-1β cleavage and secretion, particularly in microglia cells, which exhibited elevated UCH-L1 expression as compared to monocytes/macrophages. Altogether, we profiled NLRP3 inflammasome activation dynamics and highlight UCH-L1 as an important modulator of NLRP3-mediated IL-1β production, suggesting that a pharmacological inhibitor of UCH-L1 may decrease inflammation-associated pathologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.114152DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
16
nlrp3-mediated il-1β
8
il-1β production
8
inflammasome activation
8
uch-l1
7
nlrp3
6
proximity proteomics
4
proteomics reveals
4
reveals uch-l1
4
uch-l1 essential
4

Similar Publications

Brazilin, a natural homoisoflavonoid, is the primary bioactive ingredient derived from the bark and heartwood of L. It has been proven to exhibit multiple biological activities and therapeutic potential in chronic degenerative diseases, fibrotic disorders, inflammatory diseases, and cancers. However, whether it is involved in regulating the pathological process of acute kidney injury (AKI) is not fully understood.

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Low-protein Calorie-restriction Mitigates Diabetic Mice Kidney Injury via the Gut-Kidney Axis.

Int J Vitam Nutr Res

August 2025

Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210028 Nanjing, Jiangsu, China.

Background: Dietary interventions have exhibited promise in restoring microbial balance in chronic kidney disease. A low-protein calorie-restricted diet can reduce kidney injury in diabetic rodents. However, whether the renoprotective effects of this dietary intervention in murine diabetic kidney disease models are linked to gut microbiota modulation remains to be determined.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a major contributor to the high morbidity and mortality associated with intestinal ischemia-reperfusion (II/R). Despite its severity, current clinical management of ALI remains limited to supportive care without addressing the cause of the disease, underscoring the urgent need to investigate the underlying mechanism and develop targeted therapies. In this study, we employed both in vitro and in vivo models to explore ALI in the setting of II/R.

View Article and Find Full Text PDF

Profile of NT-0527, a brain penetrant NLRP3 Inflammasome inhibitor suitable as an tool compound for neuroinflammatory disorders.

RSC Med Chem

September 2025

NodThera Ltd. Suite 8, The Mansion, Chesterford Research Park, Little Chesterford, Saffron Walden Essex CB10 1XL UK

Inhibition of the NLRP3 inflammasome has emerged as a high potential treatment paradigm for the treatment of neuroinflammation, with demonstrated anti-neuroinflammatory effects in Parkinson's disease patients and a strong rationale in Alzheimer's disease and amyotrophic lateral sclerosis. To facilitate further progress in this field, brain penetrant NLRP3 inflammasome inhibitors as leads and tool compounds are required. We discovered a small molecule NLRP3 inflammasome inhibitor, NT-0527 (11), and extensively profiled this to reveal a highly potent, selective and brain penetrant compound.

View Article and Find Full Text PDF