98%
921
2 minutes
20
Background: Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen.
Results: The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula.
Conclusions: This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044560 | PMC |
http://dx.doi.org/10.1186/s12870-024-04980-2 | DOI Listing |
Pest Manag Sci
September 2025
College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
Background: Clubroot, caused by Plasmodiophora brassicae, significantly impacts cruciferous crop production worldwide. Biocontrol is an environmentally friendly and promising approach for clubroot management. Endophytic bacteria are known for their ability to promote plant growth and induce resistance against plant diseases.
View Article and Find Full Text PDFPlant Dis
September 2025
South China Agricultural University College of Agriculture, Department of Plant pathology, South China Agricultural University, Guangzhou, China, 510642.
Citrus Huanglongbing (HLB), caused by "Candidatus Liberibacter asiaticus" (CLas), is a destructive disease threatening global citrus industry. Although citrus cultivars differ in HLB sensitivity, how infection alters endophytic bacterial communities in cultivars with contrasting susceptibility remains unclear. Here, we compared endophytic microbiome shifts in leaf and root tissue of HLB-susceptible Shatangju mandarin (C.
View Article and Find Full Text PDFPeerJ
September 2025
Department of Biology, Universidad del Valle, Cali, Valle del Cauca, Colombia.
The interaction of mangrove trees with endophytic microorganisms contributes to the successful establishment of these plants in the challenging intertidal environment. The red mangrove, L. (Rhizophoraceae), is one of the dominant species in mangrove ecosystems and is characterized by the provision of several ecologically relevant services.
View Article and Find Full Text PDFPlants (Basel)
August 2025
Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia.
A wide range of microorganisms, including endophytes, frequently interact with forest trees. The role of endophytes in industrial conifers has not been fully investigated. The Yezo spruce is widely used for logging in Russia and Japan.
View Article and Find Full Text PDFJ Contam Hydrol
August 2025
Department of Biotechnology, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore 641004, Tamil Nadu, India.
Azo dye contamination poses significant environmental challenges due to its persistence and toxicity. Plant-microbe integrated systems offer a sustainable solution for dye bioremediation, yet the functional roles of microbial communities and their interactions within community and with host plants during bioremediation remain underexplored. This study presents an integrated, multi omics approach to dissect the microbial diversity, functional potential, and plant-microbe interactions within a plant-microbe integrated bioremediation system for model azo dye, methyl red degradation.
View Article and Find Full Text PDF