Background: Selenium-coated chitosan nanoparticles (CTS-Se NPs) have been proposed as innovative engineered nanoparticles with the potential to alleviate various abiotic stresses, thereby enhancing plant growth and productivity. However, evidence of their efficacy remains limited. In this study, the effects of CTS-Se NPs (10 and 20 mg L⁻¹), along with CTS NPs (0.
View Article and Find Full Text PDFThis study explores the effects of natural seed priming compounds (i.e. chitosan alone and in combination with salicylic acid or melatonin) with the symbiosis of arbuscular mycorrhizal fungi (AMF) on the capability of two Italian tomato varieties (Principe Borghese and San Marzano nano) to withstand water deprivation through high-throughput plant phenotyping technology.
View Article and Find Full Text PDFPriming modulates plant stress responses before the stress appears, increasing the ability of the primed plant to endure adverse conditions and thrive. In this context, we investigated the effect of biological (i.e.
View Article and Find Full Text PDFSalinity represents a considerable environmental risk, exerting deleterious effects on horticultural crops. Nanotechnology has recently emerged as a promising avenue for enhancing plant tolerance to abiotic stress. Among nanoparticles, cerium oxide nanoparticles (CeO NPs) have been demonstrated to mitigate certain stress effects, including salinity.
View Article and Find Full Text PDFBackground: Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp.
View Article and Find Full Text PDFSoil salinity is one of the increasing problems in agricultural fields in many parts of the world, adversely affecting the performance and health of the plants. As a pleiotropic signal and antioxidant molecule in both animals and plants, melatonin has been reported to possess significant roles in combating with stress factors, in general and salt stress, in particular. In this study, the interactive effects of melatonin (0, 75, and 150 μM) and salt stress (0, 50 and 100 mM NaCl) were investigated by assaying the some agronomic, physlogical and biochemical attributes and essential oil compounds of bitter melon (Momordica charantia).
View Article and Find Full Text PDFEnviron Microbiol Rep
December 2023
Legumes maintain soil fertility thanks to their associated microbiota but are threatened by climate change that causes soil microbial community structural and functional modifications. The core microbiome associated with different chickpea and lentil genotypes was described after an unexpected climatic event. Results showed that chickpea and lentil bulk soil microbiomes varied significantly between two sampling time points, the first immediately after the rainfall and the second 2 weeks later.
View Article and Find Full Text PDFPotatoes are a staple food with high antioxidant properties that can positively affect population health. The beneficial effects of potatoes have been attributed to tuber quality. However, the tuber quality related researches at genetic levels are very few.
View Article and Find Full Text PDFThe increase in environmental temperature due to global warming is a critical threat to plant growth and productivity. Heat stress can cause impairment in several biochemical and physiological processes. Plants sense and respond to this adverse environmental condition by activating a plethora of defense systems.
View Article and Find Full Text PDFFront Plant Sci
December 2022
Heat stress (HS) severely affects different cellular compartments operating in metabolic processes and represents a critical threat to plant growth and yield. Chloroplasts are crucial for heat stress response (HSR), signaling to the nucleus the environmental challenge and adjusting metabolic and biosynthetic functions accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein, has been recognized as one of the main players of chloroplast retrograde signaling.
View Article and Find Full Text PDFL. is a glycophyte representing one of the most important plants in the Mediterranean area, both from an economic and agricultural point of view. Its adaptability to different environmental conditions enables its cultivation in numerous agricultural scenarios, even on marginal areas, characterized by soils unsuitable for other crops.
View Article and Find Full Text PDFPicco is a greatly appreciated truffle species mainly distributed in Italy. Its price and characteristics mostly depend on its geographical origin. Truffles represent a fundamental step of the life cycle of species promoting spore dissemination.
View Article and Find Full Text PDFChloroplast biogenesis requires a tight communication between nucleus and plastids. By retrograde signals, plastids transmit information about their functional and developmental state to adjust nuclear gene expression, accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein integrating several developmental and stress-related signals, is one of the main players of retrograde signaling.
View Article and Find Full Text PDFBiology (Basel)
January 2022
() subsp. "De Donno" is the etiological agent of "Olive Quick Decline Syndrome" (OQDS) on olive trees ( L.); the presence of the bacterium causes xylem vessel occlusions inducing a drought stress and the development of leaf scorch symptoms, which may be worsened by water shortage in summer.
View Article and Find Full Text PDFSignificant variation in epidermal bladder cell (EBC) density and salt tolerance (ST) exists amongst quinoa accessions, suggesting that salt sequestration in EBCs is not the only mechanism conferring ST in this halophyte. In order to reveal other traits that may operate in tandem with salt sequestration in EBCs and whether these additional tolerance mechanisms acted mainly at the root or shoot level, two quinoa (Chenopodium quinoa) accessions with contrasting ST and EBC densities (Q30, low ST with high EBC density versus Q68, with high ST and low EBC density) were studied. The results indicate that responses in roots, rather than in shoots, contributed to the greater ST in the accession with low EBC density.
View Article and Find Full Text PDFPhysiol Plant
December 2021
Soil salinity is among the major abiotic stresses that plants must cope with, mainly in arid and semiarid regions. The tolerance to high salinity is an important agronomic trait to sustain food production. Quinoa is a halophytic annual pseudo-cereal species with high nutritional value that can secrete salt out of young leaves in external non-glandular cells called epidermal bladder cells (EBC).
View Article and Find Full Text PDFBackground: Truffles are symbiotic fungi that develop underground in association with plant roots, forming ectomycorrhizae. They are primarily known for the organoleptic qualities of their hypogeous fruiting bodies. Primarily, Tuber magnatum Pico is a greatly appreciated truffle species mainly distributed in Italy and Balkans.
View Article and Find Full Text PDFInvestigation of cultivated plant physiology grown under low energy input plays an important role to indicate their fitness to the new environmental conditions. The durum-wheat cultivars Creso and Dylan were tested to evaluate the growth, production, and proteomic and transcriptomic profiles of the crop under different synthetic and organic nitrogen fertilization regimes. In this work, a two-dimensional gel electrophoresis (2-DE) approach combined with liquid chromatography-mass spectrometry (LC-MS) was used to investigate the protein changes induced by the use of different nitrogen sources (hydrolysate of proteins 1 and 2, rhizovit, synthesis, leather) on wheat plants.
View Article and Find Full Text PDFThe influences of various factors, including the symbiosis established with the roots of specific tree species, on the production of volatiles in the fruiting bodies of Tuber magnatum have not been investigated yet. Volatiles in T. magnatum fruiting bodies were quantitatively and qualitatively determined by both PTR-MS and GC-MS in order to compare the accuracy of the two methods.
View Article and Find Full Text PDFTruffles are among the most expensive foods available in the market, usually used as flavoring additives for their distinctive aroma. The most valuable species is Tuber magnatum Pico, better known as "Alba white truffle", in which bis(methylthio)methane is the key aroma compound. Given the high economical value of genuine white truffles, analytical approaches are required to be able to discriminate between natural or synthetic truffle aroma.
View Article and Find Full Text PDFIn this paper volatile organic compounds (VOCs) from durum wheat cultivars and landraces were analyzed using PTR-TOF-MS. The aim was to characterize the VOC's profile of the wholemeal flour and of the kernel to find out if any VOCs were specific to varieties and sample matrices. The VOC data is accompanied by SDS-PAGE analyses of the storage proteins (gliadins and glutenins).
View Article and Find Full Text PDFIn this paper volatile organic compounds (VOCs) from Tuber magnatum fruiting bodies were analyzed using a PTR-TOF-MS instrument. The aim was to characterize the VOC's profile of the fruiting bodies and identify if any VOCs were specific to a season and geographical areas. Multiple factorial analysis (MFA) was carried out on the signals obtained by MS.
View Article and Find Full Text PDFBackground: A number of Tuber species are ecologically important. The fruiting bodies of some of these also have value as a cooking ingredient due to the fact that they possess exceptional flavor and aromatic properties. In particular, T.
View Article and Find Full Text PDF