98%
921
2 minutes
20
Objective: To explore the changes in the cerebral microstructure of patients with noise-induced hearing loss (NIHL) using diffusion tensor imaging (DTI).
Method: Overall, 122 patients with NIHL (mild [MP, n = 79], relatively severe patients [including moderate and severe; RSP, n = 32], and undetermined [lost to follow-up, n = 11]) and 84 healthy controls (HCs) were enrolled. All clinical data, including age, education level, hearing threshold, occupation type, noise exposure time, and some scale scores (including the Mini-Mental State Examination [MMSE], tinnitus handicap inventory [THI], and Hamilton Anxiety Scale [HAMA]), were collected and analyzed. All participants underwent T1WI3DFSPGR and DTI, and tract-based spatial statistics and region of interest (ROI) analysis were used for assessment.
Results: The final sample included 71 MP, 28 RSP, and 75 HCs. The HAMA scores of the three groups were significantly different (p < .05). The noise exposure times, hearing thresholds, and HAMA scores of the MP and RSP were significantly different (p < .05). The noise exposure time was positively correlated with the hearing threshold and negatively correlated with the HAMA scores (p < .05), whereas the THI scores were positively correlated with the hearing threshold (p < .05). DTI analysis showed that all DTI parameters (fractional anisotropy [FA], axial diffusivity [AD], mean diffusivity [MD], and radial diffusivity [RD]) were significantly different in the left inferior longitudinal fasciculus (ILF) and left inferior fronto-occipital fasciculus (IFOF) for the three groups (p < .05). In addition, the FA values were significantly lower in the bilateral corticospinal tract (CST), right fronto-pontine tract (FPT), right forceps major, left superior longitudinal fasciculus (temporal part) (SLF), and left cingulum (hippocampus) (C-H) of the MP and RSP than in those of the HCs (p < .05); the AD values showed diverse changes in the bilateral CST, left IFOF, right anterior thalamic radiation, right external capsule (EC), right SLF, and right superior cerebellar peduncle (SCP) of the MP and RSP relative to those of the HC (p < .05). However, there were no significant differences among the bilateral auditory cortex ROIs of the three groups (p > .05). There was a significant negative correlation between the FA and HAMA scores for the left IFOF/ILF, right FPT, left SLF, and left C-H for the three groups (p < .05). There was a significant positive correlation between the AD and HAMA scores for the left IFOF/ILF and right EC of the three groups (p < .05). There were significantly positive correlations between the RD/MD and HAMA scores in the left IFOF/ILF of the three groups (p < .05). There was a significant negative correlation between the AD in the right SCP and noise exposure time of the MP and RSP groups (p < .05). The AD, MD, and RD in the left ROI were significantly positively correlated with hearing threshold in the MP and RSP groups (p < .05), whereas FA in the right ROI was significantly positively correlated with the HAMA scores for the three groups (p < .05).
Conclusion: The changes in the white matter (WM) microstructure may be related to hearing loss caused by noise exposure, and the WM structural abnormalities in patients with NIHL were mainly located in the syndesmotic fibers of the temporooccipital region, which affected the auditory and language pathways. This confirmed that the auditory pathways have abnormal structural connectivity in patients with NIHL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034863 | PMC |
http://dx.doi.org/10.1002/brb3.3479 | DOI Listing |
J Neuroimaging
September 2025
Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.
Background And Purpose: Socioeconomic determinants of health impact childhood development and adult health outcomes. One key aspect is the physical environment and neighborhood where children live and grow. Emerging evidence suggests that neighborhood deprivation, often measured by the Area Deprivation Index (ADI), may influence neurodevelopment, but longitudinal and multimodal neuroimaging analyses remain limited.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
September 2025
School of Psychology, The University of Queensland, Brisbane, Queensland, Australia; Centre for Advanced Imaging/Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia. Electronic address:
Comput Biol Med
September 2025
Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain. Electronic address:
Modelling the diffusion-relaxation magnetic resonance (MR) signal obtained from multi-parametric sequences has recently gained immense interest in the community due to new techniques significantly reducing data acquisition time. A preferred approach for examining the diffusion-relaxation MR data is to follow the continuum modelling principle that employs kernels to represent the tissue features, such as the relaxations or diffusion properties. However, constructing reasonable dictionaries with predefined signal components depends on the sampling density of model parameter space, thus leading to a geometrical increase in the number of atoms per extra tissue parameter considered in the model.
View Article and Find Full Text PDFOncogene
September 2025
Division of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.
View Article and Find Full Text PDFMov Disord
September 2025
Movement Investigation and Therapeutics Team, Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute, Paris, France.
Background: Cervical dystonia is characterized by abnormal neck and head movements, possibly related to a dysfunction of the interstitial nucleus of Cajal (INC) and the head neural integrator, a system responsible for the control of head and eye movements. However, neuroanatomical evidence of alterations in the head neural integrator in cervical dystonia is sparse.
Objectives: We investigated structural and functional integrity of the INC and its connections in cervical dystonia.