98%
921
2 minutes
20
The subthalamic nucleus (STN) plays critical roles in the motor and cognitive function of the basal ganglia (BG), but the exact nature of these roles is not fully understood, especially in the context of decision-making based on uncertain evidence. Guided by theoretical predictions of specific STN contributions, we used single-unit recording and electrical microstimulation in the STN of healthy monkeys to assess its causal, computational roles in visual-saccadic decisions based on noisy evidence. The recordings identified subpopulations of STN neurons with distinct task-related activity patterns that related to different theoretically predicted functions. Microstimulation caused changes in behavioral choices and response times that reflected multiple contributions to an "accumulate-to-bound"-like decision process, including modulation of decision bounds and evidence accumulation, and to non-perceptual processes. These results provide new insights into the multiple ways that the STN can support higher brain function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11030388 | PMC |
http://dx.doi.org/10.1101/2024.04.09.588715 | DOI Listing |
Brain Stimul
September 2025
Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom. Electronic address:
Background: Precisely timed brain stimulation, such as phase-locked deep brain stimulation (PLDBS), offers a promising approach to modulating dysfunctional neural networks by enhancing or suppressing specific oscillations. However, its clinical application has been hindered by the lack of user-friendly systems and the challenge of real-time phase estimation amid stimulation artifacts.
Material And Method: In this work, we developed a clinically translatable PLDBS framework that enables real-time, cycle-by-cycle stimulation using standard amplifiers and a computer-in-the-loop system.
Eur J Neurol
September 2025
Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Torino, Italy.
Background: The factors contributing to a poor response to subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) are not yet fully understood. Accordingly, predicting the outcome might be challenging particularly in those who display an optimal response to the Levodopa challenge test.
Objective: To determine which factors may contribute to poor outcome of STN-DBS in PD.
Cureus
August 2025
Neurology, Emory University, Atlanta, USA.
Deep brain stimulation (DBS) and the use of directional subsegmental stimulation have significantly advanced symptom management in patients with Parkinson's disease (PD) and essential tremor (ET). This study examines the use of directional programming in a tertiary care center. We retrospectively reviewed medical records of 12 PD patients (all with bilateral subthalamic nucleus (STN) implants) and 13 ET patients (12 with bilateral and 1 with unilateral ventral intermediate nucleus (VIM) implants) who received directional leads.
View Article and Find Full Text PDFCureus
August 2025
Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, USA.
Freezing of gait (FoG) is a disabling symptom of Parkinson's disease (PD) characterized by involuntary cessation/reduction. While deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) effectively treats common PD symptoms such as tremor, its impact on FoG is less clear. Rarely, STN-DBS itself can induce FoG.
View Article and Find Full Text PDFBrain Stimul
September 2025
Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China; Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China. Electronic address:
Background: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has emerged as an effective therapy for Meige syndrome (MS). However, the optimal stimulation site within STN and the most effective stimulation fiber tracts have not been investigated.
Methods: Based on the discovery cohort (n = 65), we first identified the optimal stimulation site within the STN using the sweet spot mapping method.