98%
921
2 minutes
20
Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.19764 | DOI Listing |
Pest Manag Sci
September 2025
IRTA, Fruit Production Program, Fruitcentre, Lleida, Catalonia, Spain.
Background: Red leaf blotch (RLB), caused by Polystigma amygdalinum, is a major foliar disease of almond trees in Mediterranean and Middle Eastern regions. While preventive fungicide applications are the main control strategy, cultural practices aimed at reducing pathogen inoculum in leaf litter are gaining relevance. This study evaluated the efficacy of four chemical treatments on fungal biomass and ascospore production in leaf litter and assessed the impact of two cultural practices-urea application and leaf litter removal-on airborne inoculum levels and disease incidence under field conditions.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
The utilization of arbuscular mycorrhizal fungi (AMF) and spp. correlates with improved plant nutrition and the stimulation of systemic plant defenses in response to pathogen challenges. Nonetheless, studies examining the effects of AMF colonization and the foliar application of the isolate Tvd44 on viral infection are limited.
View Article and Find Full Text PDFPlant J
September 2025
National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China.
Tropical and subtropical fruit trees face serious threats of oomycete-caused plant diseases. However, the molecular mechanism by which oomycete pathogens suppress the immunity of these fruit trees remains largely unclear. Effectors play a crucial role in the pathogenesis of plant pathogenic oomycetes.
View Article and Find Full Text PDFForested, freshwater tidal wetlands in the southeastern US are dominated by bald cypresses (), which tolerate low levels of salinity. However, the response of old-growth bald cypress trees to prolonged increases in salinity remains uncertain. Bald cypress ghost forests occur along Smith Creek, a tributary of the Cape Fear River, North Carolina which has been dredged multiple times since 1871.
View Article and Find Full Text PDFNat Commun
August 2025
Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
Plants that live at high latitudes and altitudes must adapt to growth in cold environments. Trees survive freezing winter conditions by ceasing growth and forming protective winter buds at the end of the growing season. To optimize growth and adaptation, the timing of growth cessation and bud set is critical.
View Article and Find Full Text PDF