98%
921
2 minutes
20
The disturbance of infrastructures may affect biological communities that are exposed to them. This study assesses the impact of high-speed (highway and railway) infrastructures in a protected study site, the Natural Reserve Fontanili di Corte Valle Re (Emilia-Romagna, Italy). We compared bird diversity with sound intensity and frequency in three sampling areas, increasingly distant from the infrastructures at the border with the reserve, during the last 4 years (2019-2022), monitoring sedentary, nesting, and migratory bird species. We hypothesize a decreasing diversity closer to the source of disturbance, which is mostly attributable to noise pollution. Our findings confirmed this trend, and we show that, in particular, disturbance seems to influence species richness more than the total abundance of birds. We also discovered that highway disturbance was much higher than railway in terms of frequency and duration. In light of these results, we suggest that some species, which have a behavioral ecology strongly based on singing to communicate with each other for their reproductive and defensive strategies, may suffer more from constant acoustic disturbance. The installation of effective noise barriers to shield the sound produced by the highways should be considered a mandatory request not only in proximity to houses but also in the vicinity of protected areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133032 | PMC |
http://dx.doi.org/10.1007/s11356-024-33372-0 | DOI Listing |
J Appl Clin Med Phys
September 2025
Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA.
Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2025
Clinical Imaging Physics Group, Duke University Health System, Durham, North Carolina, USA.
Introduction: Medical physicists play a critical role in ensuring image quality and patient safety, but their routine evaluations are limited in scope and frequency compared to the breadth of clinical imaging practices. An electronic radiologist feedback system can augment medical physics oversight for quality improvement. This work presents a novel quality feedback system integrated into the Epic electronic medical record (EMR) at a university hospital system, designed to facilitate feedback from radiologists to medical physicists and technologist leaders.
View Article and Find Full Text PDFNat Microbiol
September 2025
Division of Computational Pathology, Brigham and Women's Hospital, Boston, MA, USA.
Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled.
View Article and Find Full Text PDFLight Sci Appl
September 2025
State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Opto-Electronics, Shanxi University, 030006, Taiyuan, China.
The dominant technical noise of a free-running laser practically limits bright squeezed light generation, particularly within the MHz band. To overcome this, we develop a comprehensive theoretical model for nonclassical power stabilization, and propose a novel bright squeezed light generation scheme incorporating hybrid power noise suppression. Our approach integrates broadband passive power stabilization with nonclassical active stabilization, extending the feedback bandwidth to MHz frequencies.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Laboratory of Quantum Information, University of Science and Technology of China, 230026, Hefei, China.
Quantum imaging with spatially entangled photons offers advantages such as enhanced spatial resolution, robustness against noise, and counterintuitive phenomena, while a biphoton spatial aberration generally degrades its performance. Biphoton aberration correction has been achieved by using classical beams to detect the aberration source or scanning the correction phase on biphotons if the source is unreachable. Here, a new method named position-correlated biphoton Shack-Hartmann wavefront sensing is introduced, where the phase pattern added on photon pairs with a strong position correlation is reconstructed from their position centroid distribution at the back focal plane of a microlens array.
View Article and Find Full Text PDF