Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1002/jhm.13371DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
4
intelligence medicine
4
medicine primer
4
primer recommendation
4
artificial
1
medicine
1
primer
1
recommendation
1

Similar Publications

Objectives: To evaluate the performance of artificial intelligence (AI)-based models in predicting elevated neonatal insulin levels through fetal hepatic echotexture analysis.

Methods: This diagnostic accuracy study analyzed ultrasound images of fetal livers from pregnancies between 37 and 42 weeks, including cases with and without gestational diabetes mellitus (GDM). Images were stored in Digital Imaging and Communications in Medicine (DICOM) format, annotated by experts, and converted to segmented masks after quality checks.

View Article and Find Full Text PDF

Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.

View Article and Find Full Text PDF

This study investigates how scientists, educators, and ethics committee members in Türkiye perceive the opportunities and risks posed by generative AI and the ethical implications for science and education. This study uses a 22-question survey developed by the EOSC-Future and RDA AIDV Working Group. The responses were gathered from 62 universities across 208 universities in Türkiye, with a completion rate of 98.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF