Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Pharmaceuticals and personal care products (PPCPs) have a significant impact on the environment and human health, due to their sometimes toxic and carcinogenic characteristics. Therefore, an innovative chemosensor was constructed for ultrasensitive determination of two typical PCCPs (hydroquinone (HQ) and catechol (CC)) in several minutes. The homemade chemosensor (UiO-67@GO/MWCNTs) consisted of MOF(UiO-67), graphene oxide (GO), and multi-walled carbon nanotubes (MWCNTs) composites; it was a networked, structurally sparse, porosity-rich, homogeneous octahedral composite, and had ultra-high electrical conductivity, which provided lots of active adsorption sites, promote charge transfer, and enrich lots of molecules to be measured in a few minutes. The prepared electrochemical sensor showed good long-term stability, applicability, reproducibility, and immunity to interference for the determination of HQ and CC, with a wide linear range of response of 5.0 ~ 940 µM for both HQ and CC, and a low limit of detection with satisfactory recoveries. In addition, a new strategy of using MOF composites as the basis for electrochemical determination of organic small molecules was established, and a new platform was constructed for the quantitative determination of organic small molecules in various environmental samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-024-06349-6 | DOI Listing |