98%
921
2 minutes
20
Keloids are characterized by abnormal wound healing with excessive accumulation of extracellular matrix. Myofibroblasts are the primary contributor to extracellular matrix secretion, playing an essential role in the wound healing process. However, the differences between myofibroblasts involved in keloid formation and normal wound healing remain unclear. To identify the specific characteristics of keloid myofibroblasts, we initially assessed the expression levels of well-established myofibroblast markers, α-smooth muscle actin (α-SMA) and transgelin (TAGLN), in scar and keloid tissues (n = 63 and 51, respectively). Although myofibroblasts were present in significant quantities in keloids and immature scars, they were absent in mature scars. Next, we conducted RNA sequencing using myofibroblast-rich areas from keloids and immature scars to investigate the difference in RNA expression profiles among myofibroblasts. Among significantly upregulated 112 genes, KN motif and ankyrin repeat domains 4 (KANK4) was identified as a specifically upregulated gene in keloids. Immunohistochemical analysis showed that KANK4 protein was expressed in myofibroblasts in keloid tissues; however, it was not expressed in any myofibroblasts in immature scar tissues. Overexpression of KANK4 enhanced cell mobility in keloid myofibroblasts. Our results suggest that the KANK4-mediated increase in myofibroblast mobility contributes to keloid pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11018845 | PMC |
http://dx.doi.org/10.1038/s41598-024-59293-z | DOI Listing |
Front Oncol
August 2025
Institute of Burns, Tongren Hospital of Wuhan University and Wuhan Third Hospital, Wuhan, China.
Introduction: Facial scars are generally disfiguring and can cause both physiological and psychological trauma. Currently, there is a lack of effective treatment options for facial scars. In recent years, local superficial radiation therapy has emerged as a clinically proven treatment to effectively prevent scar recurrence after surgery.
View Article and Find Full Text PDFFront Pharmacol
August 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
Connective tissue growth factor (CTGF) is notably upregulated in scar tissue, making it a promising target for therapeutic intervention. Here, we have designed and screened an antisense oligonucleotide (ASO) that binds specifically to the exon five sequence of CTGF, with particular emphasis on the use of 2'-O-methoxyethyl (MOE) and locked nucleic acid (LNA) modifications to enhance stability and specificity. experiments demonstrated that both MOE-ASO#1 and LNA-ASO#1 significantly inhibited fibroblast proliferation and extracellular matrix protein expression.
View Article and Find Full Text PDFWound Repair Regen
September 2025
Center for Tissue Engineering, Department of Plastic Surgery, University of California Irvine, Orange, California, USA.
Dipeptidyl-peptidase 4 inhibitors, DPP-4i, are an established antiglycaemic medication for Type 2 Diabetes. There has been a growing interest in DPP-4i's potential to improve wound healing and reduce fibrosis. The purpose of this study is to survey the current literature for applications of DPP-4i in wound healing and scars, and explore their potential outside of glycaemic control.
View Article and Find Full Text PDFMol Med Rep
November 2025
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
Aberrant extracellular matrix (ECM) production by dermal fibroblasts drives fibrotic skin diseases, which has an adverse impact on the lives of patients. Current treatments are limited; therefore, the development of new antifibrotic strategies is necessary. The aim of the present study was to investigate zinc finger 469 (ZNF469) as a potential ECM regulator in skin fibrosis.
View Article and Find Full Text PDFBiologics
August 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People's Republic of China.
Purpose: Targeting the distinct genetic and protein expression profiles of keloids necessitates the identification of novel therapeutic targets. This study was aimed to elucidate the role of Bcl-2-associated athanogene 2 (BAG2) in keloid pathology and identify compounds with high-affinity to BAG2.
Patients And Methods: Cell migration, and cell proliferation assays, along with flow cytometry, were used to evaluate the effects of BAG2 on keloid fibroblasts (KFs) derived from tissue samples of patients with abdominal or chest keloids.