Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SARS-CoV-2 main protease, M , is responsible for the processing of the viral polyproteins into individual proteins, including the protease itself. M is a key target of anti-COVID-19 therapeutics such as nirmatrelvir (the active component of Paxlovid). Resistance mutants identified clinically and in viral passage assays contain a combination of active site mutations (e.g. E166V, E166A, L167F), which reduce inhibitor binding and enzymatic activity, and non-active site mutations (e.g. P252L, T21I, L50F), which restore the fitness of viral replication. Although the mechanism of resistance for the active site mutations is apparent, the role of the non-active site mutations in fitness rescue remains elusive. In this study, we use the model system of a M triple mutant (L50F/E166A/L167F) that confers not only nirmatrelvir drug resistance but also a similar fitness of replication compared to the wild-type both in vitro and in vivo. By comparing peptide and full-length M protein as substrates, we demonstrate that the binding of M substrate involves more than residues in the active site. In particular, L50F and other non-active site mutations can enhance the M dimer-dimer interactions and help place the nsp5-6 substrate at the enzyme catalytic center. The structural and enzymatic activity data of M L50F, L50F/E166A/L167F, and others underscore the importance of considering the whole substrate protein in studying M and substrate interactions, and offers important insights into M function, resistance development, and inhibitor design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014590PMC
http://dx.doi.org/10.1101/2024.04.01.587566DOI Listing

Publication Analysis

Top Keywords

site mutations
20
active site
12
non-active site
12
sars-cov-2 main
8
main protease
8
enzymatic activity
8
site
6
substrate
5
resistance
5
mutations
5

Similar Publications

Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.

View Article and Find Full Text PDF

Imaging mass cytometry dataset of small-cell lung cancer tumors and tumor microenvironments.

BMC Res Notes

September 2025

Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.

Objectives: Small cell lung cancer (SCLC) accounts for approximately 15% of lung tumors and is marked by aggressive growth and early metastatic spread. In this study, we used two SCLC mouse models with differing tumor mutation burdens (TMB). To investigate tumor composition, spatial architecture, and interactions with the surrounding microenvironment, we acquired multiplexed images of mouse lung tumors using imaging mass cytometry (IMC).

View Article and Find Full Text PDF

[Glomangiomatosis of uncertain malignant potential: a clinicopathological and genetic analysis].

Zhonghua Bing Li Xue Za Zhi

September 2025

Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China.

To investigate the clinicopathological features, genetic characteristics, and differential diagnosis of glomangiomatosis with uncertain malignant potential. Two cases of glomangiomatosis with uncertain malignant potential were collected at Henan Provincial People's Hospital from 2013 and 2023. Immunohistochemistry and next generation sequencing (DNA-seq) were used to detect the related protein and gene variation.

View Article and Find Full Text PDF

To explore the clinicopathological and molecular genetic characteristics of anaplastic lymphoma kinase (ALK)-rearranged renal cell carcinoma (RCC), including a rare case with the TPM1-ALK gene subtype. Three cases of ALK-rearranged RCC diagnosed in the Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China from January 2020 to December 2024 were collected. Their clinical pathological and next-generation sequencing (NGS) data were analyzed.

View Article and Find Full Text PDF

Mature mRNAs are generated by spliceosomes that recruit factors to aid RNA splicing in which introns are removed and exons joined. Among the splicing factors, a family of proteins contain a homologous U2 Auxiliary Factor (U2AF) Homology Motif (UHM) to bind with factors containing U2AF ligand motifs (ULM) and recruit them to regulate 3' splice site selection. Mutations and overexpression of UHM splicing factors are frequently found in cancers.

View Article and Find Full Text PDF