Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282369PMC
http://dx.doi.org/10.1093/sysbio/syae012DOI Listing

Publication Analysis

Top Keywords

complex polyploids
8
genomic composition
8
species
8
loci alleles
8
genes involved
8
polyploids origins
4
genomic
4
origins genomic
4
composition role
4
role introgressed
4

Similar Publications

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF

Microbiome Diversity and Dynamics in Lotus-Fish Co-Culture Versus Intensive Pond Systems: Implications for Sustainable Aquaculture.

Biology (Basel)

August 2025

Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.

The lotus-fish co-culture (LFC) system leverages plant-fish symbiosis to optimize aqua-culture environments, enhancing both economic and ecological yields. However, the eco-logical mechanisms of microbial communities in LFC systems remain poorly understood, particularly regarding the functional roles of fungi, archaea, and viruses. This study compared microbiota (viruses, archaea, fungi) in water, sediment, and fish (crucian carp) gut of LFC and intensive pond culture (IPC) systems using integrated metagenomic and environmental analyses.

View Article and Find Full Text PDF

Gene expression of developing seeds drives essential processes such as nutrient storage, stress tolerance and germination. However, the spatial organisation of gene expression within the complex structure of the seed remains largely unexplored. Here we report the use of the STOmics spatial transcriptomics platform to visualise spatial expression patterns in the wheat (Triticum aestivum) seed at the critical period of grain filling in mid-seed development.

View Article and Find Full Text PDF

CRISPR/Cas-Mediated Optimization of Soybean Shoot Architecture for Enhanced Yield.

Int J Mol Sci

August 2025

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.

Plant architecture is a crucial agronomic trait significantly impacting soybean () yield. Traditional breeding has made some progress in optimizing soybean architecture, but it is limited in precision and efficiency. The Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein (CRISPR/Cas) system, a revolutionary gene-editing technology, provides unprecedented opportunities for plant genetic improvement.

View Article and Find Full Text PDF