98%
921
2 minutes
20
Dissolved organic matter (DOM) is a vast and complex chemical mixture that plays a key role in the mediation of the global carbon cycle. Fundamental understanding of the source and fate of oceanic organic matter is obscured due to poor definition of the key molecular contributors to DOM, which limits accurate sample analysis and prediction of the Earth's carbon cycle. Previous work has attempted to define the components of the DOM through a variety of chromatographic and spectral techniques. However, modern preparative and analytical methods have not isolated or unambiguously identified molecules from DOM. Therefore, previously proposed structures are based solely on the mixture's aggregate properties and do not accurately describe any true individual molecular component. In addition to this, there is a lack of appropriate analogues of the individual chemical classes within DOM, limiting the scope of experiments that probe the physical, chemical, and biological contributions from each class. To address these problems, we synthesized a series of analogues of carboxylate-rich alicyclic molecules (CRAM), a molecular class hypothesized to exist as a major contributor to DOM. Key analytical features of the synthetic CRAMs were consistent with marine DOM, supporting their suitability as chemical substitutes for CRAM. This new approach provides access to a molecular toolkit that will enable previously inaccessible experiments to test many unproven hypotheses surrounding the ever-enigmatic DOM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044592 | PMC |
http://dx.doi.org/10.1021/acs.est.4c00166 | DOI Listing |
Adv Mater
September 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China.
The construction of strong metal-support interactions (SMSI) is an effective strategy to enhance and control heterogeneous catalysts. However, conventional methods require pre-synthesized metal-loaded catalysts, followed by SMSI formation via high-temperature treatment under oxidative/reductive atmospheres, adsorbate-mediated treatment, and photo-treatment, adding complexity to catalyst synthesis and hindering continuous interfacial tuning. In this work, a "photobreeding" method is employed to treat ZnCdS, leveraging the UV-induced photochromic reaction of ZnS to generate metallic Zn at room temperature, while CdS remains inert.
View Article and Find Full Text PDFAdv Mater
September 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical
Sonocatalytic therapy (SCT) is a non-invasive tumor treatment modality that utilizes ultrasound (US)- activated sonocatalysts to generate reactive oxygen species (ROS), whose production critically dependent on the electronic structural properties of the catalytic sites. However, the spin state, which is a pivotal descriptor of electronic properties, remains underappreciated in SCT. Herein, a Ti-doped zirconium-based MOF (Ti-UiO-66, denoted as UTN) with ligand-deficient defects is constructed for SCT, revealing the important role of the electronic spin state in modulating intrinsic catalytic activity.
View Article and Find Full Text PDFNat Commun
September 2025
School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
The photovoltaic performance of CuZnSn(S,Se) is limited by open-circuit voltage losses (ΔV) in the radiative (ΔV) and non-radiative (ΔV) limits, due to sub-bandgap absorption and deep defects, respectively. Recently, several devices with power conversion efficiencies approaching 15% have been reported, prompting renewed interest in the possibility that the key performance-limiting factors have been addressed. In this work, we analyze the sources of ΔV in these devices and offer directions for future research.
View Article and Find Full Text PDFEnviron Res
September 2025
Department of Environment and Energy, Sejong University, Seoul 05006, South Korea. Electronic address:
Identifying the sources of sedimentary organic matter (OM) is essential for understanding pollution dynamics and guiding effective management in estuarine environments. This study proposes a novel and transferable source tracking framework that integrates Fourier transform infrared (FTIR) and fluorescence spectroscopy with a principal component analysis-absolute principal component score-multiple linear regression (PCA-APCS-MLR) receptor model to apportion OM sources in surface sediments across four South Korean estuaries with contrasting land use. Five new infrared-based indices (IRIs), developed from diagnostic FTIR absorbance features of water-extractable organic matter (WEOM), were designed to capture source-specific functional group compositions linked to terrestrial, synthetic, and petroleum-derived OM.
View Article and Find Full Text PDF