98%
921
2 minutes
20
Peanut production is threatened by climate change. Damage to seedlings from low temperatures in early spring can limit yield. Plant adaptations to chilling stress remain unclear in peanut seedlings. It is essential to understand how peanut acquires chilling tolerance. We evaluated effects of chilling stress on growth and recovery of peanut seedlings. We compared and analysed biological characteristics, antioxidants, photosynthesis, biochemical and physiological responses, and nutrient absorption at varying levels of chilling. Compared with chilling-sensitive FH18, the reduced impact of chilling stress on chilling-tolerant NH5 was associated with reduced ROS accumulation, higher ascorbate peroxidase activity and soluble sugar content, lower soluble protein content, and smaller reductions in nutrient content during stress. After removal of chilling stress, FH18 had significant accumulation of O and HO, which decreased photosynthesis, nutrient absorption, and transport. ROS-scavenging reduced damage from chilling stress, allowed remobilization of nutrients, improved chilling tolerance, and restored plant functioning after chilling stress removal. These findings provide a reference for targeted research on peanut seedling tolerance to chilling and lay the foundation for bioinformatics-based research on peanut chilling tolerance mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/plb.13643 | DOI Listing |
Int J Biol Macromol
September 2025
College of Food Science and Engineering, Jilin University, 130062, Changchun, PR China. Electronic address:
Active films displayed substantial prospects to maintain quality of tropical fruits during storage and transportation. This study developed multifunctional composite films loaded with melatonin/carvacrol nanoemulsions (MCNE) in guar gum/pullulan polysaccharide (GP) matrixes. The SEM analysis showed that MCNE was uniformly dispersed in GP film matrixes, and formed dense and continuous phase structure.
View Article and Find Full Text PDFPlants (Basel)
August 2025
Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
The purpose of this study was to establish the relationship between the chilling resistance of rubber trees and the bark-bleeding characteristics caused by chilling stress, considering physiological indicators in rubber tree bark, cell wall chemical components, fiber morphologies, and tensile properties. This offered a unique perspective for examining the underlying mechanisms of latex bleeding and chilling stress in . One-year-old seedlings and two-year-old twig segments in five- and twenty-one-year-old rubber trees (5YB and 21YB) were used to compare the age-mediation differences in their various parameters.
View Article and Find Full Text PDFAnimals (Basel)
August 2025
Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand.
This study aimed to investigate physical and biochemical strategies to optimize the preservation and fertilizing capacity of rooster semen during chilled storage and after artificial insemination (AI), respectively. Two semen extenders-0.9% sodium chloride (NaCl) and IGGKPh-were evaluated through two factorial experiments.
View Article and Find Full Text PDFAnimals (Basel)
August 2025
Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno 74, 06124 Perugia, Italy.
Artificial insemination (AI) in rabbits depends largely on chilled semen storage, but the physiological responses to chilling and associated biochemical changes in seminal plasma (SP) remain poorly understood, particularly across breeds. This study aimed to compare the semen preservation capacity of Algerian local population (LAP) and New Zealand White (NZW) rabbits and to explore the relationship between SP oxidative stress biomarkers and sperm traits during 72 h of chilled storage at 5 °C. Semen pools (nine/breed) were evaluated at 0, 4, 24, 48, and 72 h for motility, viability, and acrosome status.
View Article and Find Full Text PDFRice (N Y)
August 2025
Tainan District Agricultural Research and Extension Station, Ministry of Agriculture, No. 70, Muchang, Xinhua, Tainan, 712009, Taiwan.
Chilling stress can severely damage rice and lead to yield losses. The genetic mechanisms underlying responses of rice to chilling stress are complex and can vary depending on the genetic background, developmental stage, and experimental conditions. In this study, we used the chilling stress-tolerant japonica variety Taiken 9 (TK9) and the chilling stress-sensitive indica variety Taichung Sen 17 (TCS17) to investigate the genetic basis of chilling tolerance in rice seedlings.
View Article and Find Full Text PDF