98%
921
2 minutes
20
Maize ( L.) is an important cereal and is affected by climate change. Therefore, the production of climate-smart maize is urgently needed by preserving diverse genetic backgrounds through the exploration of their genetic diversity. To achieve this, 96 maize inbred lines were used to screen for phenotypic yield-associated traits and grain quality parameters. These traits were studied across two different environments (Anand and Godhra) and polymorphic simple sequence repeat (SSR) markers were employed to investigate the genetic diversity, population structure, and trait-linked association. Genotype-environment interaction (GEI) reveals that most of the phenotypic traits were governed by the genotype itself across the environments, except for plant and ear height, which largely interact with the environment. The genotypic correlation was found to be positive and significant among protein, lysine and tryptophan content. Similarly, yield-attributing traits like ear girth, kernel rows ear, kernels row and number of kernels ear were strongly correlated to each other. Pair-wise genetic distance ranged from 0.0983 (1820194/T1 and 1820192/4-20) to 0.7377 (IGI-1101 and 1820168/T1). The SSRs can discriminate the maize population into three distinct groups and shortlisted two genotypes (IGI-1101 and 1820168/T1) as highly diverse lines. Out of the studied 136 SSRs, 61 were polymorphic to amplify a total of 131 alleles (2-3 per loci) with 0.46 average gene diversity. The Polymorphism Information Content (PIC) ranged from 0.24 () to 0.58 (). Similarly, population structure analysis revealed three distinct groups with 19.79% admixture among the genotypes. Genome-wide scanning through a mixed linear model identifies the stable association of the markers , and with protein, and with tryptophan, and and with total soluble sugar. The obtained maize lines and SSRs can be utilized in future maize breeding programs in relation to other trait characterizations, developments, and subsequent molecular breeding performances for trait introgression into elite genotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975177 | PMC |
http://dx.doi.org/10.3390/plants13060823 | DOI Listing |
JAMA Netw Open
September 2025
Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston.
Importance: Trisomy 13 (T13) and trisomy 18 (T18) are chromosomal abnormalities with high mortality rates in the first year of life. Understanding differences in long-term survival between children with full vs mosaic or partial trisomy is crucial for prognosis and health care planning.
Objective: To examine the differences in 10-year survival between children with full T13 and T18 vs those with mosaic or partial trisomy.
Cell Mol Biol (Noisy-le-grand)
September 2025
Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq.
Gastric cancer is one of the causes of deaths related to cancer across the globe and both genetic and environmental factors are the most prominent. Causes of its pathogenesis. This paper researches the expression of the C-FOS gene.
View Article and Find Full Text PDFHead Neck Pathol
September 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
Myoepithelial carcinoma (MECA) is a malignant neoplasm composed exclusively of myoepithelial cells and accounts for less than 1% of all salivary gland tumors. Its diagnosis is often challenging due to histologic overlaps with benign lesions and its variable morphologic presentation. Although molecular profiling has emerged as a valuable tool in salivary gland tumor classification, the genetic landscape of MECA remains incompletely defined.
View Article and Find Full Text PDFArch Microbiol
September 2025
Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.
View Article and Find Full Text PDFPlant Mol Biol
September 2025
Institute of Biological Chemistry, The Washington State University, Pullman, WA, 99164, USA.
Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.
View Article and Find Full Text PDF