Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-molecule electrical junctions possess a molecular core connected to source and drain electrodes via anchor groups, which feed and extract electricity from specific atoms within the core. As the distance between electrodes increases, the electrical conductance typically decreases, which is a feature shared by classical Ohmic conductors. Here we analyze the electrical conductance of cycloparaphenylene (CPP) macrocycles and demonstrate that they can exhibit a highly nonclassical increase in their electrical conductance as the distance between electrodes increases. We demonstrate that this is due to the topological nature of the de Broglie wave created by electrons injected into the macrocycle from the source. Although such topological states do not exist in isolated macrocycles, they are created when the molecule is in contact with the source. They are predicted to be a generic feature of conjugated macrocycles and open a new avenue to implementing highly nonclassical transport behavior in molecular junctions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057032PMC
http://dx.doi.org/10.1021/acs.nanolett.3c04796DOI Listing

Publication Analysis

Top Keywords

electrical conductance
12
topological states
8
conjugated macrocycles
8
distance electrodes
8
electrodes increases
8
highly nonclassical
8
signatures topological
4
states conjugated
4
macrocycles
4
macrocycles single-molecule
4

Similar Publications

The oral epithelial barrier plays a crucial role in maintaining oral health by protecting against microbial invasion and mechanical stress while regulating selective permeability. Disruption of this barrier contributes to inflammation and the development of oral diseases such as gingivitis and periodontitis. Pinoresinol, a lignan with antioxidant, antimicrobial, and anti-inflammatory properties, has demonstrated health benefits in systemic diseases; however, its effects on oral epithelial barrier integrity remain unclear.

View Article and Find Full Text PDF

Evaluation of mechanical ventilation modes in the laparoscopic perioperative period with electrical impedance tomography.

PLoS One

September 2025

Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China.

Purpose: Uncertainty persists regarding the optimal mode of mechanical ventilation for laparoscopic perioperative periods. Electrical impedance tomography (EIT) is an effective tool for monitoring and guiding lung-protective ventilation. This study aimed to compare the effects of pressure-controlled ventilation-volume guaranteed (PCV-VG) and volume-controlled ventilation (VCV) on pulmonary ventilation during laparoscopic surgery.

View Article and Find Full Text PDF

We report the performance of solid-state ceramic supercapacitors (SSCs) based on a novel composite electrolyte comprising aluminum-doped lithium lanthanum titanate perovskite, LiLaTiAlO (Al-doped LLTO), and the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM BF). Rietveld refinement of X-ray diffraction data confirms the preservation of the tetragonal perovskite phase after Al substitution, indicating structural stability of the host lattice. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy further corroborate the successful incorporation of Al without forming secondary phases.

View Article and Find Full Text PDF

In the stable cone-jet regime, liquid usually presents the shape of a cone extended by a jet at its apex, with jet breakup yielding fine drops. The dynamics of the Taylor cone critically affect the stability of the jet and further determine the jet and/or drop size. In the present work, the morphology of the Taylor cone, cone length, and cone angle were studied through experimental and numerical means, where the operating parameters and liquid properties are considered.

View Article and Find Full Text PDF

A Low-Voltage-Driven Droplet Sorter for High-Stability and Small-Deformation Droplet Sorting.

Electrophoresis

September 2025

School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing, China.

Electric droplet sorting is widely applied in the screening of target molecules, cells, drugs, and microparticles. Previous studies have made several optimizations on the electrode materials, structures, and arrangements. However, voltages of over 1 kV are required to realize droplet sorting, which causes the undesired droplet splitting.

View Article and Find Full Text PDF