Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996453PMC
http://dx.doi.org/10.1101/2024.03.22.586270DOI Listing

Publication Analysis

Top Keywords

serbp1
9
serbp1 interacts
8
interacts parp1
8
protein complexes
8
splicing cell
8
cell division
8
stress granules
8
parp1 parylation-dependent
4
parylation-dependent protein
4
complexes
4

Similar Publications

When Heroes Fall: Reduced Expression of Heat-Resistant Obscure Proteins in Ischemic Stroke.

Neuromolecular Med

September 2025

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia.

The recently discovered family of heat-resistant obscure (Hero) proteins represents a novel class with chaperone-like activity and unique protective properties. These proteins may contribute to cellular survival in ischemic stroke (IS) conditions. Herein, we aimed to investigate the expression dynamics of six Hero genes during the acute and subacute phases of IS.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression and RNA processing during mammalian oocyte development. SERPINE1 mRNA-binding protein 1 (SERBP1), a conserved RNA-binding protein (RBP), exhibits prominent expression in the female reproductive system and throughout oogenesis. Conditional deletion of Serbp1 using oocyte-specific Zp3⁠/⁠Gdf9⁠-Cre drivers resulted in arrested oocyte growth, female infertility, and failure of blastocyst formation from two-cell embryos.

View Article and Find Full Text PDF

Nerve injury-induced changes in pain-associated genes contribute to genesis of neuropathic pain and comorbid anxiety. Phosphorylated CTD interacting factor-1 (PCIF1)-triggered N6, 2'-O-dimethyladenosine (mAm) mRNA modification represents an additional layer of gene regulation. However, the role of PCIF1 in these disorders is elusive.

View Article and Find Full Text PDF

Drought is a common environmental condition that significantly impairs plant growth. In response to drought, plants close their stomata to minimize transpiration and meanwhile activate many stress-responsive genes to mitigate damage. These stress-related mRNA transcripts require the assistance of RNA-binding proteins throughout their metabolic process, culminating in protein synthesis in the cytoplasm.

View Article and Find Full Text PDF

Although multiple aspects of molecular pathology underlying cardiovascular diseases (CVDs) have been revealed, the complete picture has yet to be elucidated. In this respect, annotation of the novel links between genes and atherosclerosis is of great importance for cardiovascular medicine. Aligning with our previous research, we aimed to analyze the cardiovascular predisposition contribution of the genes encoding Hero-proteins, polypeptides with chaperone activity.

View Article and Find Full Text PDF