98%
921
2 minutes
20
In clinical bacteriology laboratories, reading and processing of sterile plates remain a significant part of the routine workload (30%-40% of the plates). Here, an algorithm was developed for bacterial growth detection starting with any type of specimens and using the most common media in bacteriology. The growth prediction performance of the algorithm for automatic processing of sterile plates was evaluated not only at 18-24 h and 48 h but also at earlier timepoints toward the development of an early growth monitoring system. A total of 3,844 plates inoculated with representative clinical specimens were used. The plates were imaged 15 times, and two different microbiologists read the images randomly and independently, creating 99,944 human ground truths. The algorithm was able, at 48 h, to discriminate growth from no growth with a sensitivity of 99.80% (five false-negative [FN] plates out of 3,844) and a specificity of 91.97%. At 24 h, sensitivity and specificity reached 99.08% and 93.37%, respectively. Interestingly, during human truth reading, growth was reported as early as 4 h, while at 6 h, half of the positive plates were already showing some growth. In this context, automated early growth monitoring in case of normally sterile samples is envisioned to provide added value to the microbiologists, enabling them to prioritize reading and to communicate early detection of bacterial growth to the clinicians.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077979 | PMC |
http://dx.doi.org/10.1128/jcm.01651-23 | DOI Listing |
Environ Microbiol Rep
October 2025
Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye.
Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.
View Article and Find Full Text PDFGenes Genet Syst
September 2025
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University.
In most eubacteria the initiator protein DnaA triggers chromosomal replication by forming an initiation complex at the origin of replication and also functions as a transcriptional regulator, coordinating gene expression with cell cycle progression. While DnaA-regulated genes are relatively well characterized in exponentially growing cells, its role in gene regulation during stationary phase remains insufficiently explored. Here, using an aquatic bacterium Caulobacter crescentus as a model, we show that C.
View Article and Find Full Text PDFMethods Cell Biol
September 2025
Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, Oviedo, Spain. Electronic address:
The present study focuses on the phenotypic characterization of several mutants of Flavobacterium psychrophilum, obtained from a transposon mutant library. This Gram-negative bacterium is the etiological agent of the "cold water disease", pathology that usually affects salmonids, mainly Oncorhynchus mykiss. This microorganism is considered a "fastidious bacterium" due to the difficulty to isolate it.
View Article and Find Full Text PDFMicrob Pathog
September 2025
Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural Unive
Public health problems caused by foodborne illnesses have become increasingly serious. Although it was usually regarded as an opportunistic pathogen causing urinary tract infections in humans, recent years have seen an increasing number of foodborne infections related to P. mirabilis.
View Article and Find Full Text PDFBiotechnol Adv
September 2025
DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Henrik Dams Allé, B202, 2800 Kongens Lyngby, Denmark. Electronic address:
Electric fields significantly influence bacterial cells by altering their physiology, membrane properties, membrane potential, and permeability, as well as their metabolism and mobility. These interactions result in observable changes in growth rates, cellular morphology, and gene expression. This review provides a comprehensive examination of the effects of electric fields on bacterial cells, focusing specifically on mechanisms such as electro-stimulation, electroporation, electrophoresis, and dielectrophoresis.
View Article and Find Full Text PDF