In clinical bacteriology laboratories, reading and processing of sterile plates remain a significant part of the routine workload (30%-40% of the plates). Here, an algorithm was developed for bacterial growth detection starting with any type of specimens and using the most common media in bacteriology. The growth prediction performance of the algorithm for automatic processing of sterile plates was evaluated not only at 18-24 h and 48 h but also at earlier timepoints toward the development of an early growth monitoring system.
View Article and Find Full Text PDFIn chronic shoulder pain, adaptations in the nervous system such as in motoneuron excitability, could contribute to impairments in scapular muscles, perpetuation and recurrence of pain and reduced improvements during rehabilitation. The present cross-sectional study aims to compare trapezius neural excitability between symptomatic and asymptomatic subjects. In 12 participants with chronic shoulder pain (symptomatic group) and 12 without shoulder pain (asymptomatic group), the H reflex was evoked in all trapezius muscle parts, through C3/4 nerve stimulation, and the M-wave through accessory nerve stimulation.
View Article and Find Full Text PDFDespite the need for more effective drug treatments to address muscle atrophy and disease, physiologically accurate in vitro screening models and higher information content preclinical assays that aid in the discovery and development of novel therapies are lacking. To this end, MyoScreen was developed: a robust and versatile high-throughput high-content screening (HT/HCS) platform that integrates a physiologically and pharmacologically relevant micropatterned human primary skeletal muscle model with a panel of pertinent phenotypic and functional assays. MyoScreen myotubes form aligned, striated myofibers, and they show nerve-independent accumulation of acetylcholine receptors (AChRs), excitation-contraction coupling (ECC) properties characteristic of adult skeletal muscle and contraction in response to chemical stimulation.
View Article and Find Full Text PDFAdoption of spheroids within high-content screening (HCS) has lagged behind high-throughput screening (HTS) due to issues with running complex assays on large three-dimensional (3D) structures.To enable multiplexed imaging and analysis of spheroids, different cancer cell lines were grown in 3D on micropatterned 96-well plates with automated production of nine uniform spheroids per well. Spheroids achieve diameters of up to 600 µm, and reproducibility was experimentally validated (interwell and interplate CV(diameter) <5%).
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2014
Purpose: To develop a tumor tracking method based on a surrogate-driven motion model, which provides noninvasive dynamic localization of extracranial targets for the compensation of respiration-induced intrafraction motion in high-precision radiation therapy.
Methods And Materials: The proposed approach is based on a patient-specific breathing motion model, derived a priori from 4-dimensional planning computed tomography (CT) images. Model parameters (respiratory baseline, amplitude, and phase) are retrieved and updated at each treatment fraction according to in-room radiography acquisition and optical surface imaging.
The considered problem of 3-D reconstruction consists in computationally and passively recovering both topography and texture of a scene surface observed by optical sectioning with a limited depth-of-field imaging system (typically a conventional optical microscope). Throughout a sequence of registered 2-D images, the concepts of shape-from-focus and extended-depth-of-field involve recovering both topography (depth map) and texture image of the surface by researching in-focus information, respectively. Toward that aim, traditional approaches generally follow a 2-D sectional way and thereby fail to deal with noisy and disturbed acquisitions, quite frequent in transmitted light observations and of interest in this paper.
View Article and Find Full Text PDF