Publications by authors named "Aurora Fassi"

Imaging technologies are being increasingly used in biomedical research and experimental toxicology to gather morphological and functional information from cellular models. There is a concrete opportunity of incorporating imaging-based in vitro methods in international guidelines to respond to regulatory requirements with human relevant data. To translate these methods from R&D to international regulatory acceptance, the community needs to implement test methods under quality management systems, assess inter-laboratory transferability, and demonstrate data reliability and robustness.

View Article and Find Full Text PDF

Passive Gamma Emission Tomography (PGET) has been developed by the International Atomic Energy Agency to directly image the spatial distribution of individual fuel pins in a spent nuclear fuel assembly and determine potential diversion. The analysis and interpretation of PGET measurements rely on the availability of comprehensive datasets. Experimental data are expensive and limited, so Monte Carlo simulations are used to augment them.

View Article and Find Full Text PDF

Purpose: At Centro Nazionale di Adroterapia Oncologica (CNAO, Pavia, Italy) ocular proton therapy (OPT) is delivered using a non-dedicated beamline. This paper describes the novel clinical workflow as well as technologies and methods adopted to achieve accurate target positioning and verification during ocular proton therapy at CNAO.

Method: The OPT clinical protocol at CNAO prescribes a treatment simulation and a delivery phase, performed in the CT and treatment rooms, respectively.

View Article and Find Full Text PDF

The aim of this study was to investigate the use of 3D optical localization of multiple surface control points for deep inspiration breath-hold (DIBH) guidance in left-breast radiotherapy treatments. Ten left-breast cancer patients underwent whole-breast DIBH radiotherapy controlled by the Real-time Position Management (RPM) system. The reproducibility of the tumor bed (i.

View Article and Find Full Text PDF

Purpose: Over the last four decades, Ocular Proton Therapy has been successfully used to treat patients affected by intraocular lesions. For this, treatment geometry verification is routinely performed using radiographic images to align a configuration of fiducial radiopaque markers implanted on the sclera outer surface. This paper describes the clinical application of an alternative approach based on optical eye tracking for three-dimensional noninvasive and automatic eye localization.

View Article and Find Full Text PDF

Purpose: The aim of this study was to evaluate a surrogate-driven motion model based on four-dimensional computed tomography that is able to predict CT volumes corresponding to arbitrary respiratory phases. Furthermore, the comparison of three different driving surrogates is examined and the feasibility of using the model for 4D dose re-calculation will be discussed.

Methods: The study is based on repeated 4DCTs of twenty patients treated for bronchial carcinoma and metastasis.

View Article and Find Full Text PDF

The integration of in-room X-ray imaging and optical surface tracking has gained increasing importance in the field of image guided radiotherapy (IGRT). An essential step for this integration consists of temporally synchronizing the acquisition of X-ray projections and surface data. We present an image-based method for the synchronization of cone-beam computed tomography (CBCT) and optical surface systems, which does not require the use of additional hardware.

View Article and Find Full Text PDF

Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging.

View Article and Find Full Text PDF

Purpose: To suggest a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy and the imaging dose of the VERO dynamic tumour tracking (DTT) for its clinical implementation.

Methods: Geometric accuracy was evaluated for gantry 0° and 90° in terms of prediction (EP), mechanical (EM) and tracking (ET) errors for sinusoidal patterns with 10 and 20 mm amplitudes, 2-6 s periods and phase shift up to 1 s and for 3 patient patterns. The automatic 4D model update was investigated simulating changes in the breathing pattern during treatment.

View Article and Find Full Text PDF

The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient's thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient's anatomical configuration.

View Article and Find Full Text PDF

Purpose: To obtain a contrasted image of the tumor region during the setup for proton therapy in lung patients, by using proton radiography and x-ray computed tomography (CT) prior knowledge.

Methods And Materials: Six lung cancer patients' CT scans were preprocessed by masking out the gross tumor volume (GTV), and digitally reconstructed radiographs along the planned beam's eye view (BEV) were generated, for a total of 27 projections. Proton radiographies (PR) were also computed for the same BEV through Monte Carlo simulations.

View Article and Find Full Text PDF

Deep inspiration breath hold (DIBH) in left-sided breast cancer radiotherapy treatments allows for a reduction in cardiac and pulmonary doses without compromising target coverage. The selection of the most appropriate technology for DIBH monitoring is a crucial issue. We evaluated the stability and reproducibility of DIBHs controlled by a spirometric device, by assessing the variability of the external surface position within a single DIBH (intra-DIBH) and between DIBHs performed in the same treatment session (intrafraction) or in different sessions (interfraction).

View Article and Find Full Text PDF

Purpose: To develop a tumor tracking method based on a surrogate-driven motion model, which provides noninvasive dynamic localization of extracranial targets for the compensation of respiration-induced intrafraction motion in high-precision radiation therapy.

Methods And Materials: The proposed approach is based on a patient-specific breathing motion model, derived a priori from 4-dimensional planning computed tomography (CT) images. Model parameters (respiratory baseline, amplitude, and phase) are retrieved and updated at each treatment fraction according to in-room radiography acquisition and optical surface imaging.

View Article and Find Full Text PDF

A noninvasive eye tracking system based on infrared 3-D video-oculographic techniques is proposed for the automatic monitoring of eye position and orientation in external beam radiotherapy of ocular tumors. The presented method can be applied for the real-time estimation of lesion position and tumor-beam misalignments, allowing automatic patient setup and eye movement gated treatments. A prototypal eye tracker was developed and tested on five subjects, achieving gaze estimation errors of 0.

View Article and Find Full Text PDF

Real-time optical surface imaging systems offer a non-invasive way to monitor intra-fraction motion of a patient's thorax surface during radiotherapy treatments. Due to lack of point correspondence in dynamic surface acquisition, such systems cannot currently provide 3D motion tracking at specific surface landmarks, as available in optical technologies based on passive markers. We propose to apply deformable mesh registration to extract surface point trajectories from markerless optical imaging, thus yielding multi-dimensional breathing traces.

View Article and Find Full Text PDF