A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep learning-based computer-aided diagnosis system for the automatic detection and classification of lateral cervical lymph nodes on original ultrasound images of papillary thyroid carcinoma: a prospective diagnostic study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: This study aims to develop a deep learning-based computer-aided diagnosis (CAD) system for the automatic detection and classification of lateral cervical lymph nodes (LNs) on original ultrasound images of papillary thyroid carcinoma (PTC) patients.

Methods: A retrospective data set of 1801 cervical LN ultrasound images from 1675 patients with PTC and a prospective test set including 185 images from 160 patients were collected. Four different deep leaning models were trained and validated in the retrospective data set. The best model was selected for CAD system development and compared with three sonographers in the retrospective and prospective test sets.

Results: The Deformable Detection Transformer (DETR) model showed the highest diagnostic efficacy, with a mean average precision score of 86.3% in the retrospective test set, and was therefore used in constructing the CAD system. The detection performance of the CAD system was superior to the junior sonographer and intermediate sonographer with accuracies of 86.3% and 92.4% in the retrospective and prospective test sets, respectively. The classification performance of the CAD system was better than all sonographers with the areas under the curve (AUCs) of 94.4% and 95.2% in the retrospective and prospective test sets, respectively.

Conclusions: This study developed a Deformable DETR model-based CAD system for automatically detecting and classifying lateral cervical LNs on original ultrasound images, which showed excellent diagnostic efficacy and clinical utility. It can be an important tool for assisting sonographers in the diagnosis process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-024-03808-1DOI Listing

Publication Analysis

Top Keywords

cad system
24
ultrasound images
16
prospective test
16
lateral cervical
12
original ultrasound
12
retrospective prospective
12
deep learning-based
8
learning-based computer-aided
8
computer-aided diagnosis
8
system automatic
8

Similar Publications