98%
921
2 minutes
20
Artificial intelligence (AI) is an effective tool to accelerate drug discovery and cut costs in discovery processes. Many successful AI applications are reported in the early stages of small molecule drug discovery. However, most of those applications require a deep understanding of software and hardware, and focus on a single field that implies data normalization and transfer between those applications is still a challenge for normal users. It usually limits the application of AI in drug discovery. Here, based on a series of robust models, we formed a one-stop, general purpose, and AI-based drug discovery platform, MolProphet, to provide complete functionalities in the early stages of small molecule drug discovery, including AI-based target pocket prediction, hit discovery and lead optimization, and compound targeting, as well as abundant analyzing tools to check the results. MolProphet is an accessible and user-friendly web-based platform that is fully designed according to the practices in the drug discovery industry. The molecule screened, generated, or optimized by the MolProphet is purchasable and synthesizable at low cost but with good drug-likeness. More than 400 users from industry and academia have used MolProphet in their work. We hope this platform can provide a powerful solution to assist each normal researcher in drug design and related research areas. It is available for everyone at https://www.molprophet.com/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040716 | PMC |
http://dx.doi.org/10.1021/acs.jcim.3c01979 | DOI Listing |
Eur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
The aging population worldwide faces an increasing burden of age-related conditions, with Alzheimer's disease being a prominent neurodegenerative concern. Drug repurposing, the practice of identifying new therapeutic applications for existing drugs, offers a promising avenue for accelerated intervention. In this study, we utilized the yeast Saccharomyces cerevisiae to screen a library of 1760 FDA-approved compounds, both with and without rapamycin, to assess potential synergistic effects on yeast growth.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, 100071, Beijing, China.
Traditional live attenuated vaccines (LAVs) are typically developed through serial passaging or genetic engineering to introduce specific mutations or deletions. While viral RNA secondary or tertiary structures have been well-documented for their multiple functions, including binding with specific host proteins, their potential for LAV design remains largely unexplored. Herein, using Zika virus (ZIKV) as a model, we demonstrate that targeted disruption of the primary sequence or tertiary structure of a specific viral RNA element responsible for Musashi-1 (MSI1) binding leads to a tissue-specific attenuation phenotype in multiple animal models.
View Article and Find Full Text PDF