Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Acyl-CoA synthetase long-chain family members (ACSLs) convert free long-chain fatty acids into fatty acyl-CoA esters and play key roles in catabolic and anabolic fatty acid metabolism. The Cancer Dependency Map data suggested that ACSL3 and ACSL4 were among the top 25% Hallmark Fatty Acid Metabolism genes that support MM fitness. Here, we show that inhibition of ACSLs in human myeloma cell lines using the pharmacological inhibitor Triascin C (TriC) causes apoptosis and decreases proliferation in a dose- and time-dependent manner. RNA-seq of MM.1S cells treated with TriC for 24 h showed a significant enrichment in apoptosis, ferroptosis, and ER stress. Proteomics of MM.1S cells treated with TriC for 48 h revealed that mitochondrial dysfunction and oxidative phosphorylation were significantly enriched pathways of interest, consistent with our observations of decreased mitochondrial membrane potential and increased mitochondrial superoxide levels. Interestingly, MM.1S cells treated with TriC for 24 h also showed decreased mitochondrial ATP production rates and overall lower cellular respiration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979990PMC
http://dx.doi.org/10.1101/2024.03.13.583708DOI Listing

Publication Analysis

Top Keywords

fatty acid
12
acid metabolism
12
mm1s cells
12
cells treated
12
treated tric
12
acyl-coa synthetase
8
multiple myeloma
8
myeloma cell
8
mitochondrial dysfunction
8
decreased mitochondrial
8

Similar Publications

Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.

View Article and Find Full Text PDF

Effects of metformin on gut microbiota and short/mediumchain fatty acids in highfat diet rats.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.

Objectives: Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.

View Article and Find Full Text PDF

Leishmaniasis, a disease caused by Leishmania parasites, poses a significant health threat globally, particularly in Latin America and Brazil. Leishmania amazonensis is an important species because it is associated with both cutaneous leishmaniasis and an atypical visceral form. Current treatments are hindered by toxicity, resistance, and high cost, driving the need for new therapeutic targets and drugs.

View Article and Find Full Text PDF

Ilimaquinone-induced lipophagy diminishes lipid accumulation via AMPK activation.

BMB Rep

September 2025

Research Institute for Korean Medicine, Pusan National University, Yangsan 50612; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 05612, Korea.

Lipid metabolism plays an important role in aging and longevity, and lipophagy-a specialized form of autophagy that targets lipid vesicles-regulates lipid homeostasis and alleviates metabolic diseases such as metabolic dysfunctionassociated steatotic liver disease (MASLD). Ilimaquinone (IQ), a sesquiterpene extracted from the sea, is well-known for its various biological effects; however, its effects on lipid metabolism and longevity have not yet been elucidated. In this study, IQ acted in a dose-dependent manner, extending the lifespan of Caenorhabditis elegans (C.

View Article and Find Full Text PDF

Epigallocatechin-3-gallate (EGCG), the main catechin in green tea, is associated with antidiabetic and anti-obesity effects, although its acute hepatic actions remain unclear. We investigated short-term effects of EGCG (10-500 μm) using isolated perfused rat livers and complementary assays in mitochondrial, microsomal, and cytosolic fractions. EGCG markedly inhibited gluconeogenesis from lactate (up to 52%), glycerol (33%), and alanine (47%), while it stimulated glycolysis, glycogenolysis, and oleic acid oxidation (+42% total ketone bodies).

View Article and Find Full Text PDF