98%
921
2 minutes
20
Despite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventional cell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable. Recently, human brain organoids have emerged as a promising alternative to assess the detrimental effects of chemicals on the developing brain. However, conventional organoid culture systems have several technical limitations including low throughput, lack of reproducibility, insufficient maturity of organoids, and the formation of the necrotic core due to limited diffusion of nutrients and oxygen. To address these issues and establish predictive DNT models, cerebral organoids were differentiated in a dynamic condition in a unique pillar/perfusion plate, which were exposed to test compounds to evaluate DNT potential. The pillar/perfusion plate facilitated uniform, dynamic culture of cerebral organoids with improved proliferation and maturity by rapid, bidirectional flow generated on a digital rocker. Day 9 cerebral organoids in the pillar/perfusion plate were exposed to ascorbic acid (DNT negative) and methylmercury (DNT positive) in a dynamic condition for 1 and 3 weeks, and changes in organoid morphology and neural gene expression were measured to determine DNT potential. As expected, ascorbic acid didn't induce any changes in organoid morphology and neural gene expression. However, exposure of day 9 cerebral organoids to methylmercury resulted in significant changes in organoid morphology and neural gene expression. Interestingly, methylmercury did not induce adverse changes in cerebral organoids in a static condition, thus highlighting the importance of dynamic organoid culture in DNT assessment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979904 | PMC |
http://dx.doi.org/10.1101/2024.03.11.584506 | DOI Listing |
Brain
September 2025
Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
Animal models of the pathology of Parkinson's disease (PD) have provided most of the treatments to date, but the disease is restricted to human patients. In vitro models using human pluripotent stem cells (hPSCs)-derived neural organoids have provided improved access to study PD etiology. This study established a method to generate human striatal-midbrain assembloids (hSMAs) from hPSCs for modeling alpha-synuclein (α-syn) propagation and recapitulating basal ganglia circuits, including nigrostriatal and striatonigral pathways.
View Article and Find Full Text PDFiScience
September 2025
Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Hessen, Germany.
Efforts to efficiently target brain tumors are constrained by the dearth of appropriate models to study tumor behavior toward treatment approaches as well as potential side effects to the surrounding normal tissue. We established a reproducible cerebral organoid model of brain tumorigenesis in an autologous setting by overexpressing , a common oncogene in brain tumors. GFP/c-MYC cells were isolated from tumor organoids and used in two different approaches: GFP/c-MYC cells co-cultured with cerebral organoid slices or fused as spheres to whole organoids.
View Article and Find Full Text PDFPhytomedicine
August 2025
Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:
Background: Stress is a prevalent mental health concern that often emerges in late adolescence or early adulthood. Since 2007, the Food and Drug Administration (FDA) has not approved any novel anxiolytic pharmaceuticals, leading to increased interest in nutritional supplements as alternative therapies for stress management.
Purpose: Building on our previous study, this work aims to investigate the synergistic effects of Theanine (Th) and Walnut Peptide (WP) on stress mitigation and cognitive enhancement.
Biomed Pharmacother
September 2025
Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea. Electronic address:
Alzheimer's disease (AD) is marked by amyloid-beta (Aβ) plaque buildup, tau hyperphosphorylation, neuroinflammation, neuronal loss, and impaired adult hippocampal neurogenesis (AHN). Taurine has shown protective effects in various cellular and animal models of AD, though the molecular mechanisms of free taurine and its effects in patient-derived models remain underexplored. This study evaluates taurine's therapeutic potential using integrated in silico, in vitro, in vivo, and ex vivo approaches.
View Article and Find Full Text PDFCell Regen
September 2025
Center for Translational Neural Regeneration Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
Neural regeneration stands at the forefront of neuroscience, aiming to repair and restore function to damaged neural tissues, particularly within the central nervous system (CNS), where regenerative capacity is inherently limited. However, recent breakthroughs in biotechnology, especially the revolutions in genetic engineering, materials science, multi-omics, and imaging, have promoted the development of neural regeneration. This review highlights the latest cutting-edge technologies driving progress in the field, including optogenetics, chemogenetics, three-dimensional (3D) culture models, gene editing, single-cell sequencing, and 3D imaging.
View Article and Find Full Text PDF