Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The phosphate lithium-ion conductor LiAlTi(PO) (LATP) is an economically attractive solid electrolyte for the fabrication of safe and robust solid-state batteries, but high sintering temperatures pose a material engineering challenge for the fabrication of cell components. In particular, the high surface roughness of composite cathodes resulting from enhanced crystal growth is detrimental to their integration into cells with practical energy density. In this work, we demonstrate that efficient free-standing ceramic cathodes of LATP and LiFePO (LFP) can be produced by using a scalable tape casting process. This is achieved by adding 5 wt % of LiWO (LWO) to the casting slurry and optimizing the fabrication process. LWO lowers the sintering temperature without affecting the phase composition of the materials, resulting in mechanically stable, electronically conductive, and free-standing cathodes with a smooth, homogeneous surface. The optimized cathode microstructure enables the deposition of a thin polymer separator attached to the Li metal anode to produce a cell with good volumetric and gravimetric energy densities of 289 Wh dm and 180 Wh kg, respectively, on the cell level and Coulombic efficiency above 99% after 30 cycles at 30 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009911PMC
http://dx.doi.org/10.1021/acsami.3c18542DOI Listing

Publication Analysis

Top Keywords

solid-state batteries
8
composite cathodes
8
enabling high-performance
4
high-performance hybrid
4
hybrid solid-state
4
batteries improving
4
improving microstructure
4
microstructure free-standing
4
free-standing latp/lfp
4
latp/lfp composite
4

Similar Publications

A solid-state battery capable of 180 C superfast charging and 100% energy retention at -30 °C.

Proc Natl Acad Sci U S A

September 2025

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.

Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.

View Article and Find Full Text PDF

Commercial lithium-ion batteries using organic solvent-based liquid electrolytes (LEs) face safety issues, including risks of fire and explosion. As a safer alternative, solid-state electrolytes are being extensively explored to replace these organic solvent-based LEs. Among various solid electrolyte options, polymer electrolytes offer advantages such as flexibility and ease of processing.

View Article and Find Full Text PDF

Stimulating Efficiency for Proton Exchange Membrane Water Splitting Electrolyzers: From Material Design to Electrode Engineering.

Electrochem Energ Rev

September 2025

Institute of New Energy Materials and Engineering, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108 Fujian China.

Unlabelled: Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for large-scale hydrogen production, yet their industrial deployment is hindered by the harsh acidic conditions and sluggish oxygen evolution reaction (OER) kinetics. This review provides a comprehensive analysis of recent advances in iridium-based electrocatalysts (IBEs), emphasizing novel optimization strategies to enhance both catalytic activity and durability. Specifically, we critically examine the mechanistic insights into OER under acidic conditions, revealing key degradation pathways of Ir species.

View Article and Find Full Text PDF

SnS (tin disulfide) is a promising anode active material for lithium-ion batteries (LIBs) due to its high theoretical capacity and low material cost. Conventional synthesis methods, such as solvothermal, hydrothermal, and solid-state, require long synthesis times, the use of solvents and surfactants, and several separation steps. However, the preparation of coated SnS composites using liquid media is even more complex, requiring suitable precursors, compatible solvents, and potentially several steps.

View Article and Find Full Text PDF

This work presents the synthesis of a molecular crystal of adiponitrile (Adpn) and LiI a simple melting method. The molecular crystal has both Li and I channels and can be either a Li or an I conductor. In the stoichiometric crystal (Adpn)LiI, the Li ions interact only with four CN groups of Adpn, while the I ions are uncoordinated.

View Article and Find Full Text PDF