Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Topological materials with boundary (surface/edge/hinge) states have attracted tremendous research interest. Additionally, unconventional (obstructed atomic) materials have recently drawn lots of attention owing to their obstructed boundary states. Experimentally, Josephson junctions (JJs) constructed on materials with boundary states produce the peculiar boundary supercurrent, which was utilized as a powerful diagnostic approach. Here, we report the observations of boundary supercurrent in NiTe-based JJs. Particularly, applying an in-plane magnetic field along the Josephson current can rapidly suppress the bulk supercurrent and retain the nearly pure boundary supercurrent, namely the magnetic field filtering of supercurrent. Further systematic comparative analysis and theoretical calculations demonstrate the existence of unconventional nature and obstructed hinge states in NiTe, which could produce hinge supercurrent that accounts for the observation. Our results reveal the probable hinge states in unconventional metal NiTe, and demonstrate in-plane magnetic field as an efficient method to filter out the bulk contributions and thereby to highlight the hinge states hidden in topological/unconventional materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981750PMC
http://dx.doi.org/10.1038/s41467-024-47103-zDOI Listing

Publication Analysis

Top Keywords

magnetic field
16
boundary supercurrent
16
hinge states
12
field filtering
8
unconventional metal
8
josephson junctions
8
materials boundary
8
boundary states
8
in-plane magnetic
8
boundary
7

Similar Publications

Prolonging All-Optical Molecular Electron Spin Coherence in the Tissue Transparency Window.

J Am Chem Soc

September 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].

View Article and Find Full Text PDF

SPM as a cornerstone of an open source software ecosystem for neuroimaging.

Cereb Cortex

August 2025

Department of Psychology, Stanford University, 450 Jane Stanford Way, Building 420, Stanford, CA 94305, United States.

The SPM software package played a major role in the establishment of open source software practices within the field of neuroimaging. I outline its role in my career development and the impact it has had within our field.

View Article and Find Full Text PDF

SPM-30 years and beyond.

Cereb Cortex

August 2025

Functional Imaging Laboratory (FIL), Department of Imaging Neuroscience, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom.

This paper marks the 30th anniversary of the Statistical Parametric Mapping (SPM) software and the journal Cerebral Cortex: two modest milestones that mark the inception of cognitive neuroscience. We take this opportunity to reflect on SPM, a generation after its introduction. Each of the authors of this paper-who represent a small selection of the many contributors to SPM-were asked to consider lessons learned, what has gone well, and where there is room for improvement in future development.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) has become an essential tool in the evaluation of pediatric liver disease. However, the unique physiological, anatomical, and behavioral characteristics of pediatric patients present distinct challenges that necessitate tailored imaging strategies. These guidelines, developed by members of the Society for Pediatric Radiology (SPR) Magnetic Resonance and Abdominal Imaging Committees, provide comprehensive recommendations for performing high-quality liver MRI in children.

View Article and Find Full Text PDF

Background: Carotid artery stenosis is a major cause of stroke. Non-contrast MR angiography (MRA) using time-spatial labeling inversion pulse (Time-SLIP) may offer potential advantages over 3D time-of-flight (TOF)-MRA for simultaneous visualization of carotid, vertebral, and subclavian arteries, but remains uninvestigated.

Purpose: To determine optimal black blood inversion time (TI) for visualizing the carotid and subclavian arteries using three-dimensional (3D) fast field echo (FFE) Time-SLIP MRA, and to compare its image quality with 3D TOF-MRA.

View Article and Find Full Text PDF