Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Head and neck carcinoma treatment is shifted toward the combination of therapy causing immune checkpoint blockade (ICB) and immunogenic cell death. In this study, a CSFRi-chimeric TAM-targeting extracellular vesicle (EV@CSFRi) platform is developed and designed an intracellular protoporphyrin conjugated with RVRR peptide sequence for furin-cleavage to perform Golgi-targeting and generating ROS (GT-RG). The graphical abstract illustrates the self-assembly of GT-RG nanoparticles into nanofiber through the hydrophily of RVRR and hydrophobicity of RG, and the red line indicates the site of furin cleavage. As is shown in the Graphical abstract, the Golgi-targeting Protoporphyrin-RVRR platform is composed with CSFRi-chimeric extracellular vesicles and forms the tumor-responsive TAM-reprogramming bilayers (GT-RG@CSFRi). The GT-RG@CSFRi acted as a multifunctional theranostic platform, which can induce immunogenic cell death and further help modulate TAM, thus suppressing the HNC xenograft model by combination therapy with anti-PD-1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202400012DOI Listing

Publication Analysis

Top Keywords

immunogenic cell
12
cell death
12
head neck
8
neck carcinoma
8
combination therapy
8
graphical abstract
8
macrophage-capturing self-assembly
4
self-assembly photosensitizer
4
photosensitizer nanoparticles
4
nanoparticles induces
4

Similar Publications

Role of Splenocytes on T Cells and Its Cytokine Network in Rheumatoid Arthritis.

Crit Rev Immunol

January 2025

Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.

Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.

View Article and Find Full Text PDF

T-cell therapies have proven to be a promising treatment option for cancer patients in recent years, especially in the case of chimeric antigen receptor (CAR)-T cell therapy. However, the therapy is associated with insufficient activation of T cells or poor persistence in the patient's body, which leads to incomplete elimination of cancer cells, recurrence, and genotoxicity. By extracting the splice element of PD-1 pre-mRNA using biology based on CRISPR/dCas13 in this study, our ultimate goal is to overcome the above-mentioned challenges in the future.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a multiorgan disease caused by mutations in the gene, leading to chronic pulmonary infections and hyperinflammation. Among pathogens colonizing the CF lung, is predominant, infecting over 50% of adults with CF, and becoming antibiotic-resistant over time. Current therapies for CF, while providing tremendous benefits, fail to eliminate persistent bacterial infections, chronic inflammation, and irreversible lung damage, necessitating novel therapeutic strategies.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.

View Article and Find Full Text PDF

A new frontier in oncology: Understanding the landscape of cancer vaccines.

J Oncol Pharm Pract

September 2025

Department of Research & Development, Squad Medicine and Research (SMR), Amadalavalasa, Andhra Pradesh, India.

Cancer vaccines represent a transformative shift in oncology, aiming to prevent malignancies or treat established cancers by training the immune system to recognize tumor-specific or tumor-associated antigens. This review explores the diverse platforms and mechanisms supporting cancer vaccines, ranging from prophylactic vaccines such as HPV and hepatitis B vaccines that have significantly reduced virus-related cancers to therapeutic vaccines like Sipuleucel-T and T-VEC that extend survival in prostate cancer and melanoma. Vaccine types are classified, and delivery platforms including mRNA, peptide, dendritic cell and viral vector-based approaches are examined alongside pivotal clinical trial outcomes.

View Article and Find Full Text PDF