Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Individual differences in gray-matter morphometry in the limbic system and frontal cortex have been linked to clinical features of cocaine use disorder (CUD). Self-administration paradigms can provide more direct measurements of the relationship between the regulation of cocaine use and gray-matter morphometry when compared to self-report assessments. Our goal was to investigate associations with self-administration behavior in subcortical and cortical brain regions. We hypothesized the number of cocaine infusions self-administered would be correlated with gray-matter volumes (GMVs) in the striatum, amygdala, and hippocampus. Due to scarcity in human studies, we did not hypothesize subcortical directionality. In the frontal cortex, we hypothesized thickness would be negatively correlated with self-administered cocaine. We conducted an analysis of cocaine self-administration and structural MRI data from 33 (n = 10) individuals with moderate-to-severe CUD. Self-administration lasted 60-minutes and cocaine (8, 16, or 32 mg/70 kg) was delivered on an FR1 schedule (5-minute lockout). Subcortical and cortical regression analyses were performed that included combined bilateral regions and age, experimental variables and use history as confounders. Self-administered cocaine infusions were positively associated with caudal GMV (b = 0.18,  = 0.030) and negatively with putamenal GMV (b = -0.10,  = 0.041). In the cortical model, infusions were positively associated with insular thickness (b = 0.39,  = 0.008) and women appeared to self-administer cocaine more frequently (b = 0.23,  = 0.019). Brain morphometry features in the striatum and insula may contribute to cocaine consumption in CUD. These differences in morphometry may reflect consequences of prolonged use, predisposed vulnerability, or other possibilities.Clinical Trial Numbers: NCT01978431; NCT03471182.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305926PMC
http://dx.doi.org/10.1080/00952990.2024.2318585DOI Listing

Publication Analysis

Top Keywords

subcortical cortical
12
cocaine
11
cocaine self-administration
8
self-administration behavior
8
cocaine disorder
8
gray-matter morphometry
8
frontal cortex
8
cud self-administration
8
cocaine infusions
8
self-administered cocaine
8

Similar Publications

This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.

View Article and Find Full Text PDF

The paraventricular thalamic nucleus (PVT) integrates subcortical signals related to arousal, stress, addiction, and anxiety with top-down cortical influences. Increases or decreases in PVT activity exert profound, long-lasting effects on behavior related to motivation, addiction and homeostasis. Yet the sources of its subcortical excitatory and inhibitory afferents, their distribution within the PVT, and their integration with layer-specific cortical inputs remain unclear.

View Article and Find Full Text PDF

Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.

View Article and Find Full Text PDF

Distinct neural mechanisms underlying cognitive difficulties in preterm children born at different stages of prematurity.

Neuroimage Clin

September 2025

Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.

Objectives: To examine associations between low cognitive-performance and regional-and network-level brain changes at ages 9-10 in very-preterm, moderately-preterm, and full-term children, and explore whether these alterations predict ASD/ADHD symptoms at age 12.

Methods: This longitudinal population-based study included 9-10-year-old U.S.

View Article and Find Full Text PDF

The lateral prefrontal cortex (LPFC) serves as a critical hub for higher-order cognitive and executive functions in the human brain, coordinating brain networks whose disruption has been implicated in many neurological and psychiatric disorders. While transcranial brain stimulation treatments often target the LPFC, our current understanding of connectivity profiles guiding these interventions based on electrophysiology remains limited. Here, we present a high-resolution probabilistic map of bidirectional effective connectivity between the LPFC and widespread cortical and subcortical regions.

View Article and Find Full Text PDF