Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During the development of a sand-conglomerate reservoir, there is a huge variation in rock grain size and different åmineral compositions of different-sized sand grains. The mineral composition and microstructure of the rock both have an impact on the characteristics of the remaining oil in the reservoir. The stripping mechanism of a surfactant system on sand-conglomerate surface crude oil with varied grain size minerals was explored in this paper. Sand-conglomerate was classified and analyzed to determine their wettability and stripping oil effects. The optimization of the surfactant solution system and molecular dynamics simulation revealed the surfactant stripping mechanism on crude oil on distinct sandstone minerals. The results of the study showed that montmorillonite minerals are more readily adsorbed by surfactants. The crude oil within them is more likely to compete for adsorption and to be stripped off, and then extracted with the recovery fluid. The surfactant solution system can increase the hydrophilicity of the rock surface, make the crude oil on the rock surface shrink and gather, and enhance the transportation ability of the displacement fluid. And the emulsification seals part of the pore in the reservoir, increases the displacement pressure, and improves the overall wave volume. The results of this paper are of great significance for the efficient development of sand-conglomerate reservoirs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10974431PMC
http://dx.doi.org/10.3390/molecules29061278DOI Listing

Publication Analysis

Top Keywords

crude oil
16
stripping mechanism
12
grain size
12
mechanism surfactant
8
surfactant system
8
development sand-conglomerate
8
surface crude
8
surfactant solution
8
solution system
8
rock surface
8

Similar Publications

Sulfate Promotes Amine Salt Ozonation in Atmospheric Aerosols.

J Am Chem Soc

September 2025

Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.

Low molecular weight amines promote sulfate (SO and HSO) formation through acid-base reactions, contributing to fine particulate matter (PM). Heterogeneous ozonation converts nontoxic amine salts into highly toxic products, yet the ozonation activation mechanism is unclear. This work reveals a sulfate-dominant ozonation mechanism of amine salts in fine PM by combining advanced mass spectrometry and ab initio calculation methods.

View Article and Find Full Text PDF

Palladium-Catalyzed Coupling of Aryl Iodides with Sulfinamide Reagents for the Construction of Sulfinamides.

Chemistry

September 2025

Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 20006

A novel sulfinamide reagent was developed that enables the one-step installation of sulfinamides through palladium-catalyzed coupling with aryl iodides. This method offers distinct advantages, including the use of readily available starting materials and broad substrate compatibility. Moreover, the strategy was successfully extended to the synthesis of complex functional molecules.

View Article and Find Full Text PDF

A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.

View Article and Find Full Text PDF

Adjusting interlayer interactions and proton-conduction pathways of 2D covalent organic frameworks through the rotaxane structures.

Natl Sci Rev

September 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.

Covalent organic frameworks (COFs) have great potential as versatile platforms for proton conduction. However, the commonly applied 2D COFs that are easy to design and synthesize have only 1D channels for proton conduction, limiting the formation of continuous hydrogen bonds due to the anisotropy between their crystalline grains. Herein, we report a strategy to construct 3D channels in 2D COFs by using rotaxane structures and eliminate the strong interlayer π-π interactions, facilitating the formation of smooth 3D proton-transfer pathways during guest doping.

View Article and Find Full Text PDF

The aim of the present study was to assess the anti-inflammatory effect of hesperidin. The research was conducted by optimizing the hesperidin extraction process from citrus peel powder, followed by characterization and nutrition profiling of citrus peel hesperidin extract. Citrus peel was collected from the local market and dried in a hot air oven.

View Article and Find Full Text PDF