A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Non-Destructive Detection and Grading Method of the Internal Quality of Preserved Eggs Based on an Improved ConvNext. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a traditional delicacy in China, preserved eggs inevitably experience instances of substandard quality during the production process. Chinese preserved egg production facilities can only rely on experienced workers to select the preserved eggs. However, the manual selection of preserved eggs presents challenges such as a low efficiency, subjective judgments, high costs, and hindered industrial production processes. In response to these challenges, this study procured the transmitted imagery of preserved eggs and refined the ConvNeXt network across four pivotal dimensions: the dimensionality reduction of model feature maps, the integration of multi-scale feature fusion (MSFF), the incorporation of a global attention mechanism (GAM) module, and the amalgamation of the cross-entropy loss function with focal loss. The resultant refined model, ConvNeXt_PEgg, attained proficiency in classifying and grading preserved eggs. Notably, the improved model achieved a classification accuracy of 92.6% across the five categories of preserved eggs, with a grading accuracy of 95.9% spanning three levels. Moreover, in contrast to its predecessor, the refined model witnessed a 24.5% reduction in the parameter volume, alongside a 3.2 percentage point augmentation in the classification accuracy and a 2.8 percentage point boost in the grading accuracy. Through meticulous comparative analysis, each enhancement exhibited varying degrees of performance elevation. Evidently, the refined model outshone a plethora of classical models, underscoring its efficacy in discerning the internal quality of preserved eggs. With its potential for real-world implementation, this technology portends to heighten the economic viability of manufacturing facilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970058PMC
http://dx.doi.org/10.3390/foods13060925DOI Listing

Publication Analysis

Top Keywords

preserved eggs
32
refined model
12
preserved
9
internal quality
8
quality preserved
8
eggs
8
classification accuracy
8
grading accuracy
8
percentage point
8
model
5

Similar Publications