Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Seed dormancy is a biological mechanism that prevents germination until favorable conditions for the subsequent generation of plants are encountered. Therefore, this mechanism must be effectively established during seed maturation. Studies investigating the transcriptome and miRNAome of rice embryos and endosperms at various maturation stages to evaluate seed dormancy are limited. This study aimed to compare the transcriptome and miRNAome of rice seeds during seed maturation.

Results: Oryza sativa L. cv. Nipponbare seeds were sampled for embryos and endosperms at three maturation stages: 30, 45, and 60 days after heading (DAH). The pre-harvest sprouting (PHS) assay was conducted to assess the level of dormancy in the seeds at each maturation stage. At 60 DAH, the PHS rate was significantly increased compared to those at 30 and 45 DAH, indicating that the dormancy is broken during the later maturation stage (45 DAH to 60 DAH). However, the largest number of differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) were identified between 30 and 60 DAH in the embryo and endosperm, implying that the gradual changes in genes and miRNAs from 30 to 60 DAH may play a significant role in breaking seed dormancy. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses confirmed that DEGs related to plant hormones were most abundant in the embryo during 45 DAH to 60 DAH and 30 DAH to 60 DAH transitions. Alternatively, most of the DEGs in the endosperm were related to energy and abiotic stress. MapMan analysis and quantitative real-time polymerase chain reaction identified four newly profiled auxin-related genes (OsSAUR6/12/23/25) and one ethylene-related gene (OsERF087), which may be involved in seed dormancy during maturation. Additionally, miRNA target prediction (psRNATarget) and degradome dataset (TarDB) indicated a potential association between osa-miR531b and ethylene biosynthesis gene (OsACO4), along with osa-miR390-5p and the abscisic acid (ABA) exporter-related gene (OsMATE19) as factors involved in seed dormancy.

Conclusions: Analysis of the transcriptome and miRNAome of rice embryos and endosperms during seed maturation provided new insights into seed dormancy, particularly its relationship with plant hormones such as ABA, auxin, and ethylene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10964676PMC
http://dx.doi.org/10.1186/s12870-024-04928-6DOI Listing

Publication Analysis

Top Keywords

seed dormancy
24
transcriptome mirnaome
16
dah dah
16
seed maturation
12
mirnaome rice
12
embryos endosperms
12
seed
11
dah
11
dormancy
8
maturation
8

Similar Publications

Sugar metabolism is commonly implicated as crucial in the transition between growth and cessation during winter; however, its exact role remains elusive. The evergreen iris (Iris japonica) ceases growth in winter without entering endodormancy, yet it continues to sustain sugar metabolism and transport throughout the season. Here, we elucidate the mechanisms underlying the sugar-mediated growth transition-the shift between growth and cessation-in I.

View Article and Find Full Text PDF

Integrative multi-omics and genomic prediction reveal genetic basis of early salt tolerance in alfalfa.

J Genet Genomics

September 2025

State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangd

The genetic basis of early-stage salt tolerance in alfalfa (Medicago sativa L.), a key factor limiting its productivity, remains poorly understand. To dissect this complex trait, we integrate genome-wide association study (GWAS) and transcriptomics (RNA-seq) from 176 accessions within a machine learning based genomic prediction framework.

View Article and Find Full Text PDF

The size and composition of local species pools are, in part, determined by past dispersal events. Predicting how communities respond to future disturbances, such as fluctuating environmental conditions, requires knowledge of such histories. We assessed the influence of a historical dispersal event on community assembly by simulating various scales of dispersal for 240 serpentine annual plant communities that experienced a large shift from drought to high rainfall conditions over three years.

View Article and Find Full Text PDF

Decentralized wastewater management using treatment wetlands: Effective removal of antibiotics, resistance genes and organic micropollutants.

Sci Total Environ

September 2025

Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.

Treatment wetlands (TW) are a popular choice for decentralized wastewater treatment, with substantial documentation on their capacity to manage conventionally monitored pollutants. However, most insights into their effectiveness against emerging contaminants come from lab and mesocosm studies with a limited number of compounds, highlighting knowledge gaps in their performance at full scale. This study provides a first long-term, full-scale assessment of TW ability to remove a large number of organic micropollutants (OMPs) and manage antibiotic resistance under real-world conditions.

View Article and Find Full Text PDF

Seed coat-derived ABA regulates seed dormancy of by modulating ABA and GA balance.

Front Plant Sci

September 2025

College of Life Sciences, Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China of Ministry of Education, Shaanxi Normal University, Xi'an, China.

Plant seeds have evolved diverse dormancy types and regulatory mechanisms to adapt to environmental conditions and seasonal changes. As a commonly used rootstock for cultivated pears, faces challenges in seedling production and large-scale cultivation due to limited understanding of seed dormancy mechanisms. In this study, we report that seeds exhibit non-deep physiological dormancy, with seed coats playing a pivotal regulatory role.

View Article and Find Full Text PDF