Progress in polystyrene biodegradation by insect gut microbiota.

World J Microbiol Biotechnol

College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polystyrene (PS) is frequently used in the plastics industry. However, its structural stability and difficulty to break down lead to an abundance of plastic waste in the environment, resulting in micro-nano plastics (MNPs). As MNPs are severe hazards to both human and environmental health, it is crucial to develop innovative treatment technologies to degrade plastic waste. The biodegradation of plastics by insect gut microorganisms has gained attention as it is environmentally friendly, efficient, and safe. However, our knowledge of the biodegradation of PS is still limited. This review summarizes recent research advances on PS biodegradation by gut microorganisms/enzymes from insect larvae of different species, and schematic pathways of the degradation process are discussed in depth. Additionally, the prospect of using modern biotechnology, such as genetic engineering and systems biology, to identify novel PS-degrading microbes/functional genes/enzymes and to realize new strategies for PS biodegradation is highlighted. Challenges and limitations faced by the application of genetically engineered microorganisms (GEMs) and multiomics technologies in the field of plastic pollution bioremediation are also discussed. This review encourages the further exploration of the biodegradation of PS by insect gut microbes/enzymes, offering a cutting-edge perspective to identify PS biodegradation pathways and create effective biodegradation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-024-03932-0DOI Listing

Publication Analysis

Top Keywords

insect gut
12
biodegradation
8
biodegradation insect
8
plastic waste
8
progress polystyrene
4
polystyrene biodegradation
4
insect
4
gut
4
gut microbiota
4
microbiota polystyrene
4

Similar Publications

Metabolic and microbial responses of Ceratitis capitata to essential oil-based nano-emulsions: Implications for pest management.

Pestic Biochem Physiol

November 2025

Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones científicas, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain. Electronic address:

Essential oils (EOs) are a promising alternative to conventional pesticides, but some challenges like high volatility, poor water solubility, and rapid degradation limit their use in Integrated Pest Management (IPM). To overcome these limitations, this study aimed to develop garlic, eucalyptus, and clove EO-based nano-emulsions (EO-NEs) in a bait treatment format through the high-pressure microfluidization technique and investigated the biological activities against Ceratitis capitata. In addition, the adverse effects of the most promising nano-emulsion were evaluated towards a non-target parasitoid Anagaspis daci.

View Article and Find Full Text PDF

RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing that can be induced via the exongenous application of dsRNA. Due to its high specificity, dsRNA-based biopesticides are being developed to control pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive.

View Article and Find Full Text PDF

Varroa destructor infestation amplifies imidacloprid vulnerability in Apis mellifera.

Pestic Biochem Physiol

November 2025

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. Electronic address:

Honey bee health is affected by a variety of environmental factors, with Varroa destructor parasitism and pesticide exposure being important factors contributing to colony decline. In this study, we assessed the effects of V. destructor infestation in combination with imidacloprid exposure on honey bees.

View Article and Find Full Text PDF

Development and efficacy of dsRNA pesticides targeting the Colorado potato beetle with enhanced stability via chitosan formulations.

Pestic Biochem Physiol

November 2025

Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plant, Institute for Biosafety in Plant Biotechnology, 06484 Quedlinburg, Germany. Electronic address:

The Colorado potato beetle (CPB, Leptinotarsa decemlineata) is a major pest of solanaceous crops and has developed resistance to many conventional insecticides, highlighting the need for novel, environmentally sustainable control strategies. In this study, we evaluated the efficacy of RNA interference (RNAi) targeting the proteasome subunit β5 (PSMB5) gene as a biopesticide approach against CPB larvae. Double-stranded RNA (dsRNA) targeting PSMB5 (a highly specific dsRNA) and Actin (a less specific dsRNA) dsRNA was synthesized and applied via leaf dip assays, either in naked form or formulated with chitosan nanoparticles.

View Article and Find Full Text PDF

The LIM domain protein LmFHL2 is required for nymph-adult metamorphosis of Locusta migratoria.

Pestic Biochem Physiol

November 2025

Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China. Electronic address:

The four-and-a-half LIM domain protein 2 (FHL2) is a conserved transcriptional co-regulator critical for vertebrate development and metabolism, yet its roles in arthropods remain poorly understood. Here, we report the functional characterization of LmFHL2 in the migratory locust Locusta migratoria, a devastating pest reliant on precise molting cycles for growth and swarming. Phylogenetic and expression analyses revealed high conservation of LmFHL2 across insects, with predominant expression in integument and gut tissues.

View Article and Find Full Text PDF