Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chlamydia psittaci is an avian bacterial pathogen that can cause atypical pneumonia in humans via zoonotic transmission. It is a Gram-negative intracellular bacterium that proliferates inside membrane bound inclusions in the cytoplasm of living eukaryotic cells. The study of such cells with C. psittaci inside without destroying them poses a significant challenge. We demonstrated in this work the utility of a combined multitool approach to analyze such complex samples. Atomic force microscopy was applied to obtain high-resolution images of the surface of infected cells upon entrance of bacteria. Atomic force microscopy scans revealed the morphological changes of the cell membrane of Chlamydia infected cells such as changes in roughness of cell membrane and the presence of micro vesicles. 4Pi Raman microscopy was used to image and probe the molecular composition of intracellular bacteria inside intact cells. Information about the structure of the inclusion produced by C. psittaci was obtained and it was found to have a similar molecular fingerprint as that of an intracellular lipid droplet but with less proteins and unsaturated lipids. The presented approach demonstrates complementarity of various microscopy-based approaches and might be useful for characterization of intracellular bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmicro/dfae011DOI Listing

Publication Analysis

Top Keywords

atomic force
12
force microscopy
12
chlamydia psittaci
8
4pi raman
8
infected cells
8
cell membrane
8
intracellular bacteria
8
cells
5
psittaci infected
4
infected cell
4

Similar Publications

Double-stranded RNA (dsRNA), which induces an innate immune response against viral infections, is rarely detected in influenza A virus (IAV)-infected cells. Nevertheless, we previously reported that the influenza A viral ribonucleoprotein (vRNP) complex generates looped dsRNAs during RNA synthesis . This finding suggests that IAV possesses a specific mechanism for sequestering dsRNA within infected cells, thereby enabling viral evasion of the innate immune response.

View Article and Find Full Text PDF

The study explored HSPiP and QbD-(quality by design) enabled optimized cubosomes for sustained drug release, improved permeation, and enhanced oral bioavailability. OCUB1 (the optimized product) was characterized for size, zeta potential (ZP), thermal analysis, and surface roughness. drug release and hemolysis studies were carried out using a dialysis membrane and rat erythrocytes (4 % suspension), respectively.

View Article and Find Full Text PDF

Measurement of protein non-covalent interactions in buffer and cells.

Magn Reson Lett

May 2025

Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

Nuclear magnetic resonance (NMR) serves as a powerful tool for studying both the structure and dynamics of proteins. The NOE method, alongside residual dipolar; coupling, paramagnetic effects, -coupling, and other related techniques, has reached a level of maturity that allows for the determination of protein structures. Furthermore, NMR relaxation methods prove to be highly effective in characterizing protein dynamics across various timescales.

View Article and Find Full Text PDF

The collapse of the wave function as the mediator of free will in prime neurons.

Front Neurosci

August 2025

Cell Signaling Laboratory, Institute of Experimental Medicine, Universidad Central de Venezuela, Caracas, Venezuela.

In our current view of reality, free will hangs on two opposing forces. On one side, we have determinism, which states that everything is already determined by our inner constituents, the atoms and molecules that form our bodies. On the other side, we have quantum mechanics and its view that everything in the quantum world is inherently random and probabilistic.

View Article and Find Full Text PDF

The title complex, [Ca(NO)(CHNO)(HO)], crystallizes with an eight-coordinate Ca ion in a distorted trigonal-dodeca-hedral coordination environment. The metal ion is coordinated to two nicotinamide ligands their carbonyl O atoms, two bidentate nitrate anions and two water mol-ecules. The nicotinamide ligands adopt a nearly geometry, while the nitrate anions and aqua ligands are arranged in a pseudo- fashion.

View Article and Find Full Text PDF