Intracellular Zn promotes extracellular matrix remodeling in dexamethasone-treated trabecular meshwork.

Am J Physiol Cell Physiol

State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn significantly decreased, accompanied by impaired extracellular Zn uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn uptake, but Zn chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma. Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn significantly decreased, accompanied by impaired extracellular Zn uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00725.2023DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
16
trabecular meshwork
16
impaired extracellular
12
extracellular uptake
12
intraocular pressure
8
role ecm
8
cells treated
8
intracellular decreased
8
decreased accompanied
8
accompanied impaired
8

Similar Publications

Objectives: Juvenile dermatomyositis (JDM) is a heterogeneous autoimmune condition needing targeted treatment approaches and improved understanding of molecular mechanisms driving clinical phenotypes. We utilised exploratory proteomics from a longitudinal North American cohort of patients with new-onset JDM to identify biological pathways at disease onset and follow-up, tissue-specific disease activity, and myositis-specific autoantibody (MSA) status.

Methods: We measured 3072 plasma proteins (Olink panel) in 56 patients with JDM within 12 weeks of starting treatment (from the Childhood Arthritis and Rheumatology Research Alliance Registry and 3 additional sites) and 8 paediatric controls.

View Article and Find Full Text PDF

Biomechanic regulation of neutrophil extracellular traps in the cardiovascular system.

Trends Immunol

September 2025

Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. Electronic address:

Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.

View Article and Find Full Text PDF

Enzymatic and mechanical disruption before successive photodynamic therapy targets the extracellular matrix of Candida albicans.

Photodiagnosis Photodyn Ther

September 2025

Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Odontologia de Araraquara, Araraquara, SP, Brazil. Electronic address:

Objective: To evaluate whether pretreatment strategies targeting the extracellular matrix (ECM), such as DNase I and low-frequency ultrasound, enhance the efficacy of successive antimicrobial photodynamic therapy (aPDT) against Candida albicans biofilms and to assess the effects on biofilm components.

Methods: Forty-eight-hour C. albicans (ATCC 90028) biofilms were treated under four conditions: (I) aPDT [Photodithazine (PDZ) (25 mg/L) for 20 min + Light-Emitting Diode (LED) (660 nm, 18 J/cm²)], (II) DNase+aPDT [5 min with 20 U/mL DNase I before aPDT], (III) sonication+aPDT [7 W, 170-190 J before aPDT], (IV) Dn+So+aPDT.

View Article and Find Full Text PDF

Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.

View Article and Find Full Text PDF

Recent advances in intelligent oxygen delivery systems for tissue regeneration.

Adv Drug Deliv Rev

September 2025

State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing 210002, China; Jiangsu Provincial Key Laboratory of Nano Technology, Medical School, Nanjing University,

Oxygen plays a critical regulatory role in tissue repair and regeneration. However, in the microenvironment of tissues with vascular damage, hypoxia is commonly present. This not only suppresses cell proliferation and differentiation but also delays angiogenesis and extracellular matrix reconstruction, ultimately hindering the tissue regeneration process.

View Article and Find Full Text PDF