Review on mechanism and remediation strategies of dissolved oxygen abnormal in surface water.

Ying Yong Sheng Tai Xue Bao

School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dissolved oxygen (DO) is an important index to evaluate the quality of surface water environments. In recent years, anomalies in DO level have emerged as a major contributor to the decline of surface water quality. These anomalies have triggered several ecological and environmental challenges such as biodiversity loss, the degradation of water environmental quality, intensification of eutrophication, and an exacerbation of the greenhouse effect. Understanding the mechanisms underlying DO anomalies and devising targeted remediation strategies holds paramount importance in the scientific pursuit of water pollution control and aquatic ecosystem restoration. We explored and summarized the fluctuations and abnormal mechanism of DO concentration in surface water, focusing on factors like oxygen solubility, reoxygenation rates, and oxygen consumption by water bodies. We compiled a range of approaches for addressing DO anomalies, including pollution source management, artificial oxygenation, and the reconfiguration of aquatic ecosystems. Ultimately, we underscored the emerging significance of monitoring and regulating DO level in surface waters. Future research in this realm should encompass the establishment of distinct quality standards for surface water, the development of a comprehensive real-time spatial monitoring system for DO levels across watersheds, and the formulation of standardized procedures and technical norms.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202402.029DOI Listing

Publication Analysis

Top Keywords

surface water
20
remediation strategies
8
dissolved oxygen
8
water
8
surface
6
review mechanism
4
mechanism remediation
4
strategies dissolved
4
oxygen
4
oxygen abnormal
4

Similar Publications

Self-Transformation of 2D SnSe Nanosheets into SnO/Se Nanocomposites for Efficient Photodetection.

ACS Appl Mater Interfaces

September 2025

School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong518055, China.

The rapid development of liquid exfoliation technology has boosted fundamental research and applications of ultrathin two-dimensional (2D) materials. However, the small-sized exfoliated 2D materials with a high specific surface area may exhibit poor chemical stability. Understanding the stability of 2D crystals will be significant for their preservation and service and for the development of new stable phases via the spontaneous transition from unstable structures.

View Article and Find Full Text PDF

Is high specific surface area essential for anode catalyst supports in proton exchange membrane water electrolysis?

Mater Horiz

September 2025

New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Dispersing iridium onto high-specific-surface-area supports is a widely adopted strategy to maximize iridium utilization in anode catalysts of proton exchange membrane water electrolysis (PEMWE). However, here we demonstrate that the overall cell performance, including initial efficiency and long-term stability, does not benefit from the typical high specific surface area of catalyst supports. The conventional understanding that high iridium utilization on high-specific-surface-area supports increases activity holds only in aqueous electrolytes, while under the typical working conditions of PEMWE, the mass transport within the anode catalyst layers plays a more significant role in the overall performance.

View Article and Find Full Text PDF

Electrocatalytic water oxidation with bioinspired cubane-type Co complexes.

Dalton Trans

September 2025

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, Ciudad de México, 04510, Mexico.

Synthesis, characterization, and electrocatalytic water oxidation studies of the cubane-type complexes [(μ-)CoCl(MeOH)] (1) and [(μ-)CoCl(MeOH)] (2) are herein reported. Cubanes 1 and 2 were obtained in high yields under mild conditions by self-assembly of the ligands = 1--2-benzimidazolylmethanol and = 1-methyl-2-benzimidazolylmethanol with CoCl·6HO in basic methanolic solution. Both compounds feature a cubane-type structure in which the central {CoO} units are built by four Co centers coordinated by alkoxide-bridged oxygen and nitrogen atoms from the deprotonated ligands and stabilized by MeOH molecules and chloride ions.

View Article and Find Full Text PDF

Objectives: Lycopene is a powerful antioxidant with diverse health benefits. However, it belongs to the Biopharmaceutics Classification System II; thus, it depicts poor water solubility and dissolution. Its lipophilic nature hinders the bioavailability of this drug.

View Article and Find Full Text PDF

Unveiling the effect of Fe(III) and sulfate on ammonium oxidation under anaerobic condition: interactions and extracellular electron transfer.

Water Res

August 2025

Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.

Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.

View Article and Find Full Text PDF