98%
921
2 minutes
20
Ramie (Boehmeria nivea L.) is a promising phytoremediation candidate due to its high tolerance and enrichment capacity for antimony (Sb). However, challenges arise as Sb accumulated mainly in roots, complicating soil extraction. Under severe Sb contamination, the growth of ramie may be inhibited. Strategies are needed to enhance Sb accumulation in ramie's aboveground parts and improve tolerance to Sb stress. Considering the beneficial effects of selenium (Se) on plant growth and enhancing resistance to abiotic stresses, this study aimed to investigate the potential use of Se in enhancing Sb uptake by ramie. We investigated the effects of Se (0.5, 1, 2, 5, or 10 μM) on ramie growth, Sb uptake and speciation, antioxidant responses, and ionomic profiling in ramie under 10 mg/L of SbIII or antimonate (SbV) stresses. Results revealed that the addition of 0.5 μM Se significantly increased shoot biomass by 75.73% under SbIII stress but showed minimal effects on shoot and root length in both SbIII and SbV treatments. Under SbIII stress, 2 μM Se significantly enhanced Sb concentrations by 48.42% in roots and 62.88% in leaves. In the case of SbV exposure, 10 μM Se increased Sb content in roots by 42.57%, and 1 μM Se led to a 91.74% increase in leaves. The speciation analysis suggested that Se promoted the oxidation of SbIII to less toxic SbV to mitigate Sb toxicity. Additionally, Se addition effectively minimized the excess reactive oxygen species produced by Sb exposure, with the lowest malondialdehyde (MDA) content at 0.5 μM Se under SbIII and 2 μM Se under SbV, by activating antioxidant enzymes including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Ionomic analysis revealed that Se helped in maintaining the homeostasis of certain nutrient elements, including magnesium, potassium (K), calcium (Ca), iron (Fe), and copper (Cu) in the SbIII-treated roots and K and manganese (Mg) in the SbV-treated roots. The results suggest that low concentrations of Se can be employed to enhance the phytoremediation of Sb-contaminated soils using ramie.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.120694 | DOI Listing |
Sci Total Environ
December 2024
College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China. Electronic address:
J Environ Manage
April 2024
Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China. Electronic address:
Ramie (Boehmeria nivea L.) is a promising phytoremediation candidate due to its high tolerance and enrichment capacity for antimony (Sb). However, challenges arise as Sb accumulated mainly in roots, complicating soil extraction.
View Article and Find Full Text PDFToxics
October 2023
Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
Antimony (Sb) is a non-essential metalloid that can be taken up by plants from contaminated soils and thus enter the food chain and threaten human health. L. (ramie) is a promising phytoremediation plant for Sb-polluted soils.
View Article and Find Full Text PDFPolymers (Basel)
July 2023
Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China.
Ramie-fiber-reinforced polymer composites (RFRP) have the advantages of low price and low energy consumption, but they have high hydrophilicity due to their special chemical composition. In order to study the effect of water absorption on the performance degradation of RFRP in a hydrothermal environment, the authors prepared RFRP sheets by compression molding. Manufactured composites were exposed to a hydrothermal environment with a temperature of 40 °C and a humidity of 50% RH, 85% RH and 98% RH to study the water absorption and diffusion, mechanical properties (tensile properties, flexural properties and shear properties) of the RFRP, and their mechanical properties after drying.
View Article and Find Full Text PDFJ Environ Manage
October 2023
Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China. Electronic address:
Soil antimony (Sb) pollution is a global concern that threatens food security and human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant exhibiting high tolerance and enrichment capacity for Sb.
View Article and Find Full Text PDF