Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The microtubule-associated protein, Tau, is an intrinsically disordered protein that plays a crucial role in neurodegenerative diseases like Alzheimer's disease. The posttranslational modifications across the Tau protein domains are involved in regulating Tau protein's function and disease onset. Of the various posttranslational modifications at Ser, Thr, and Tyr sites, O-GlcNAcylation and phosphorylation are the most critical ones, playing a vital role in Tau aggregation and tauopathies. To understand the function, it is essential to characterize the structural changes associated with Tau modification. Previous experimental studies have focused on high-resolution nuclear magnetic resonance techniques to structurally characterize the effect of phosphorylation, O-GlcNAcylation, and combination of both PTMs on Tau conformation in small peptides centered on the PHF-1 epitope from amino acid 392 to 411. The structural characterization using atomistic molecular dynamics simulation of such disordered peptides requires long simulation time, proper sampling method, and utilization of appropriate force fields for accurate determination of conformational ensembles, resembling the experimental data. This chapter details the protocol for the structural characterization of modified Tau peptides using the CHARMM36m force field and enhanced sampling methods like Gaussian accelerated molecular dynamics (GaMD) simulation. We have focused on a detailed explanation of the GaMD method and analyses of molecular dynamics trajectories to explain the relationship between two modifications, phospho- and glyco-, at C-terminus of Tau protein and its stable conformation over the longer simulation timeframes. The analyses involve energetics reweighting, clustering of simulation trajectories, and characterization of secondary structure using circular dichroism data from the simulation. The reader can utilize this protocol to investigate the structures of complex proteins, especially the disordered ones.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3629-9_1DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
16
tau
8
tau peptides
8
gaussian accelerated
8
accelerated molecular
8
dynamics simulation
8
posttranslational modifications
8
tau protein
8
structural characterization
8
simulation
7

Similar Publications

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Unveiling Ion-Transport Dynamics in 2D Nanofluidic Anion-Selective Membranes toward Osmotic Energy Harvesting.

Nano Lett

September 2025

State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.

Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.

View Article and Find Full Text PDF

Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.

View Article and Find Full Text PDF

Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.

View Article and Find Full Text PDF

Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.

View Article and Find Full Text PDF