98%
921
2 minutes
20
In this study, a three-layered multicenter ONIOM approach is implemented to characterize the naive folding pathway of bovine pancreatic trypsin inhibitor (BPTI). Each layer represents a distinct level of theory, where the initial layer, encompassing the entire protein, is modeled by a general all-atom force-field GFN-FF. An intermediate electronic structure layer consisting of three multicenter fragments is introduced with the state-of-the-art semiempirical tight-binding method GFN2-TB. Higher accuracy, specifically addressing the breaking and formation of the three disulfide bonds, is achieved at the innermost layer using the composite DFT method rSCAN-3c. Our analysis sheds light on the structural stability of BPTI, particularly the significance of interlinking disulfide bonds. The accuracy and efficiency of the multicenter QM/SQM/MM approach are benchmarked using the oxidative formation of cystine. For the folding pathway of BPTI, relative stabilities are investigated through the calculation of free energy contributions for selected intermediates, focusing on the impact of the disulfide bond. Our results highlight the intricate trade-off between accuracy and computational cost, demonstrating that the multicenter ONIOM approach provides a well-balanced and comprehensive solution to describe electronic structure effects in biomolecular systems. We conclude that multiscale energy landscape exploration provides a robust methodology for the study of intriguing biological targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000224 | PMC |
http://dx.doi.org/10.1021/acs.jpcb.4c00104 | DOI Listing |
Food Chem
September 2025
Nantong Food and Drug Supervision and Inspection Center, Nantong 226001, PR China.
Different starch crystal structures significantly influence meat product quality, though their specific impacts on myofibrillar protein (MP) functionality remain unclear despite industry demand for optimized ingredients. This study compared how potato, corn, mung bean, and pea starches affect MP properties in minced pork. Our findings reveal that starch-protein interactions fundamentally regulate MP gel and emulsion properties through the following mechanisms: First, starch promotes protein aggregation by enhancing hydrophobic interactions and disulfide bond formation, affecting gel network crosslinking.
View Article and Find Full Text PDFACS Macro Lett
September 2025
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
Polyesters are a widely used class of biomaterials thanks to their (bio)degradability and tunable thermomechanical properties. Introducing dynamic disulfide bonds into their backbone enables them to be degraded through different routes and also imparts self-healing properties. However, while numerous polymerization protocols exist with which to introduce disulfide bonds into linear polymers, these methods lack the versatility needed to produce materials with diverse thermomechanical properties.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
September 2025
Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.
View Article and Find Full Text PDFFood Chem
September 2025
College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China. Electronic address: wangpei@nj
Selectively hydrolyzed soy protein can enhance wheat-based product quality by modulating gluten thermal polymerization. This study examined the effects of β-conglycinin (7S) and glycinin hydrolysate (GH) on gluten rheological and thermal properties, particle size, Raman spectra, and microstructure during heating. Both 7S and GH improved gluten viscoelasticity, with their combined addition (7S/GH) showing the strongest effect.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China. Electronic address:
Disulfidptosis is a recently identified form of regulated cell death (RCD) characterized by aberrant disulfide bond accumulation and cytoskeletal collapse under conditions of redox imbalance. SLC7A11-overexpressing tumors are uniquely susceptible to this pathway due to their elevated cystine uptake and dependence on glucose-driven NADPH production for redox maintenance. These metabolic liabilities create therapeutic opportunities to selectively trigger disulfidptosis via pharmacologic or material-based interventions.
View Article and Find Full Text PDF