98%
921
2 minutes
20
Fungal identification is a cornerstone of fungal research, yet traditional molecular methods struggle with rapid and accurate identification, especially for closely related species. To tackle this challenge, we introduce a universal identification method called Analysis of whole GEnome (AGE). AGE includes two key steps: bioinformatics analysis and experimental practice. Bioinformatics analysis screens candidate target sequences named Targets within the genome of the fungal species and determines specific Targets by comparing them with the genomes of other species. Then, experimental practice using sequencing or non-sequencing technologies would confirm the results of bioinformatics analysis. Accordingly, AGE obtained more than 1,000,000 qualified Targets for each of the 13 fungal species within the phyla Ascomycota and Basidiomycota. Next, the sequencing and genome editing system validated the ultra-specific performance of the specific Targets; especially noteworthy is the first-time demonstration of the identification potential of sequences from unannotated genomic regions. Furthermore, by combining rapid isothermal amplification and phosphorothioate-modified primers with the option of an instrument-free visual fluorescence method, AGE can achieve qualitative species identification within 30 min using a single-tube test. More importantly, AGE holds significant potential for identifying closely related species and differentiating traditional Chinese medicines from their adulterants, especially in the precise detection of contaminants. In summary, AGE opens the door for the development of whole-genome-based fungal species identification while also providing guidance for its application in plant and animal kingdoms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946254 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1336143 | DOI Listing |
Environ Microbiol Rep
October 2025
Reference Center for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.
Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.
View Article and Find Full Text PDFBMB Rep
September 2025
Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499; Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon 16499; BK21 R&E Initiative for Advanced Precision Medicine, Ajou University School of Medicine, Suwon 16499, Korea.
Altered nuclear morphology, one of the characteristics of cancer cells, is often indicative of tumor prognosis. While reactive oxygen species (ROS) are known to induce nuclear morphology changes, mechanisms underlying these effects remain elusive, particularly regarding nuclear assembly. We hypothesized that mitotic cells might exhibit increased susceptibility to ROSinduced nuclear deformation due to the dynamic nature of nuclear envelope during mitosis, i.
View Article and Find Full Text PDFInsect Sci
September 2025
Laboratory of Parasitology and Ecology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.
Sterile Insect Technique (SIT) has proven effective to reduce tsetse population density in large infected areas where animal African trypanosomosis (AAT) and human African trypanosomiasis (HAT) elimination was difficult to achieve. However, the decrease in mass production of insectary-reared tsetse and the limited but incomplete knowledge on symbiont-trypanosome interaction over time, impede large-scale use of SIT. We investigated the spatiotemporal changes in symbiont prevalence and symbiont-trypanosome interactions in wild tsetse of Sora-Mboum AAT focus in northern Cameroon, collected in 2019 and 2020, to provide insights into the mass production of refractory tsetse.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India.
Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.
View Article and Find Full Text PDFAm J Bot
September 2025
Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
Premise: Floristic exchanges between Oceania and tropical Asia have significant asymmetrical characteristics. Many groups of plants have dispersed southward from Asia to Oceania, whereas a northward dispersal from Oceania to tropical Asia (i.e.
View Article and Find Full Text PDF