98%
921
2 minutes
20
Background: Currently, culture methods are commonly used in clinical tests to detect pathogenic fungi including Candida spp. Nonetheless, these methods are cumbersome and time-consuming, thereby leading to considerable difficulties in diagnosis of pathogenic fungal infections, especially in situations that respiratory samples such as alveolar lavage fluid and pleural fluid contain extremely small amounts of microorganisms. The aim of this study was to elucidate the utility and practicality of microfluidic chip technology in quick detection of respiratory pathogenic fungi.
Methods: DNAs of clinical samples (mainly derived from sputa, alveolar lavage fluid, and pleural fluid) from 64 coastal patients were quickly detected using microfluidic chip technology with 20 species of fungal spectrum and then validated by Real-time qPCR, and their clinical baseline data were analyzed.
Results: Microfluidic chip results showed that 36 cases infected with Candida spp. and 27 cases tested negative for fungi, which was consistent with Real-time qPCR validation. In contrast, only 16 cases of fungal infections were detected by the culture method; however, one of the culture-positive samples tested negative by microfluidic chip and qPCR validation. Moreover, we found that the patients with Candida infections had significantly higher rates of platelet count reduction than fungi-negative controls. When compared with the patients infected with C. albicans alone, the proportion of males in the patients co-infected with multiple Candidas significantly increased, while their platelet counts significantly decreased.
Conclusions: These findings suggest that constant temperature amplification-based microfluidic chip technology combined with routine blood tests can increase the detection speed and accuracy (including sensitivity and specificity) of identifying respiratory pathogenic fungi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949588 | PMC |
http://dx.doi.org/10.1186/s12879-024-09212-4 | DOI Listing |
Analyst
September 2025
School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
Microfluidics-assisted spatially barcoded microarray technology offers a high-throughput, low-cost approach towards spatial transcriptomic profiling. A uniform barcoded microarray is crucial for spatially unbiased mRNA analysis. However, non-specific adsorption of barcoding reagents in microchannels occurs during liquid transport, causing non-uniform barcoding in the chip's functional regions.
View Article and Find Full Text PDFAnalyst
September 2025
Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
Rapid and efficient screening of foodborne pathogens is crucial for preventing bacterial spread and food poisoning. However, developing a multi-detection method that is easy to operate, offers good stability, and achieves high efficiency remains an enormous challenge. Existing multiplexed nucleic acid detection methods suffer from complex designs, leading to complicated operations, and non-robust sample introduction, causing primer/probe crosstalk and false-positive results.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.
Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.
View Article and Find Full Text PDFAnal Sci
September 2025
Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
Surface-enhanced Raman scattering (SERS) is a powerful analytical technique; however, its quantitative application has been limited by the instability of substrates and significant signal fluctuations. In this study, we demonstrated that 4-aminobenzenethiol (4-ATP) can be quantitatively detected through statistical analysis of SERS signal intensity distributions obtained using citrate-stabilized AuNPs, biotin-functionalized AuNPs, and gold nanoparticle (AuNP)-bound polystyrene (PS) microparticles. Raman spectra obtained in bulk aqueous solution under static conditions showed that the detection sensitivity of 4-ATP using AuNP-bound PS microparticles was approximately twice that achieved with citrate-stabilized AuNPs or biotin-modified AuNPs.
View Article and Find Full Text PDFLab Chip
September 2025
Institute of Integrated Research, Institute of Science Tokyo, R2-9, 4259 Nagatsuta-cho, Midoriku, Yokohama, Kanagawa 226-8501, Japan.
Tunability in isolating target cells of varying sizes from complex heterogeneous samples is essential for biomedical research and diagnostics. However, conventional deterministic lateral displacement (DLD) systems lack flexibility due to their fixed critical diameters (). Here, we present a thermo-responsive DLD micropillar array that enables tunable cell separation by dynamically modulating through temperature control.
View Article and Find Full Text PDF