Metabolic Quadrivalency in RSeT Human Embryonic Stem Cells.

bioRxiv

NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the most important properties of human embryonic stem cells (hESCs) is related to their pluripotent states. In our recent study, we identified a previously unrecognized pluripotent state induced by RSeT medium. This state makes primed hESCs resistant to conversion to naïve pluripotent state. In this study, we have further characterized the metabolic features in these RSeT hESCs, including metabolic gene expression, metabolomic analysis, and various functional assays. The commonly reported metabolic modes include glycolysis or both glycolysis and oxidative phosphorylation (i.e., metabolic bivalency) in pluripotent stem cells. However, besides the presence of metabolic bivalency, RSeT hESCs exhibited a unique metabolome with additional fatty acid oxidation and imbalanced nucleotide metabolism. This metabolic quadrivalency is linked to hESC growth independent of oxygen tension and restricted capacity for naïve reprogramming in these cells. Thus, this study provides new insights into pluripotent state transitions and metabolic stress-associated hPSC growth .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942463PMC
http://dx.doi.org/10.1101/2024.02.21.581486DOI Listing

Publication Analysis

Top Keywords

stem cells
12
pluripotent state
12
metabolic
8
metabolic quadrivalency
8
human embryonic
8
embryonic stem
8
rset hescs
8
metabolic bivalency
8
pluripotent
5
rset
4

Similar Publications

CRISPR/Cas9-mediated editing of COQ4 in induced pluripotent stem cells: A model for investigating COQ4-associated human coenzyme Q deficiency.

Stem Cell Res

September 2025

Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:

Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.

View Article and Find Full Text PDF

Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.

View Article and Find Full Text PDF

The journal retracts the article titled "Multipotent Stromal Cells from Subcutaneous Adipose Tissue of Normal Weight and Obese Subjects: Modulation of Their Adipogenic Differentiation by Adenosine A Receptor Ligands" [...

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.

View Article and Find Full Text PDF