Development and validation of a machine learning model to predict time to renal replacement therapy in patients with chronic kidney disease.

BMC Nephrol

Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 8795593, 1-1 idaigaoka Hasama-cho, Yufu-shi, Oita-ken, Japan.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Predicting time to renal replacement therapy (RRT) is important in patients at high risk for end-stage kidney disease. We developed and validated machine learning models for predicting the time to RRT and compared its accuracy with conventional prediction methods that uses the rate of estimated glomerular filtration rate (eGFR) decline.

Methods: Data of adult chronic kidney disease (CKD) patients who underwent hemodialysis at Oita University Hospital from April 2016 to March 2021 were extracted from electronic medical records (N = 135). A new machine learning predictor was compared with the established prediction method that uses the eGFR decline rate and the accuracy of the prediction models was determined using the coefficient of determination (R). The data were preprocessed and split into training and validation datasets. We created multiple machine learning models using the training data and evaluated their accuracy using validation data. Furthermore, we predicted the time to RRT using a conventional prediction method that uses the eGFR decline rate for patients who had measured eGFR three or more times in two years and evaluated its accuracy.

Results: The least absolute shrinkage and selection operator regression model exhibited moderate accuracy with an R of 0.60. By contrast, the conventional prediction method was found to be extremely low with an R of -17.1.

Conclusions: The significance of this study is that it shows that machine learning can predict time to RRT moderately well with continuous values from data at a single time point. This approach outperforms the conventional prediction method that uses eGFR time series data and presents new avenues for CKD treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943785PMC
http://dx.doi.org/10.1186/s12882-024-03527-9DOI Listing

Publication Analysis

Top Keywords

machine learning
20
conventional prediction
16
prediction method
16
kidney disease
12
time rrt
12
method egfr
12
predict time
8
time renal
8
renal replacement
8
replacement therapy
8

Similar Publications

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Diagnostic and Screening AI Tools in Brazil's Resource-Limited Settings: Systematic Review.

JMIR AI

September 2025

Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.

Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.

Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.

Methods: A systematic review was performed.

View Article and Find Full Text PDF