98%
921
2 minutes
20
Objectives: This study aimed to investigate the regulatory roles of lncRNA MALAT1, miR-124-3p, and IGF2BP1 in osteogenic differentiation of periodontal ligament stem cells (PDLSCs).
Materials And Methods: We characterized PDLSCs by employing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses to evaluate the expression of key osteogenic markers including ALPL, SPP1, and RUNX2. Manipulation of lncRNA MALAT1 and miR-124-3p expression levels was achieved through transfection techniques. In addition, early osteogenic differentiation was assessed via Alkaline phosphatase (ALP) staining, and mineral deposition was quantified using Alizarin Red S (ARS) staining. Cellular localization of lncRNA MALAT1 was determined through Fluorescence In Situ Hybridization (FISH). To elucidate the intricate regulatory network, we conducted dual-luciferase reporter assays to decipher the binding interactions between lncRNA MALAT1 and miR-124-3P as well as between miR-124-3P and IGF2BP1.
Results: Overexpression of lncRNA MALAT1 robustly promoted osteogenesis in PDLSCs, while its knockdown significantly inhibited the process. We confirmed the direct interaction between miR-124-3p and lncRNA MALAT1, underscoring its role in impeding osteogenic differentiation. Notably, IGF2BP1 was identified as a direct binding partner of lncRNA MALAT1, highlighting its pivotal role within this intricate network. Moreover, we determined the optimal IGF2BP1 concentration (50 ng/ml) as a potent enhancer of osteogenesis, effectively countering the inhibition induced by si-MALAT1. Furthermore, in vivo experiments utilizing rat calvarial defects provided compelling evidence, solidifying lncRNA MALAT1's crucial role in bone formation.
Conclusions: Our study reveals the regulatory network involving lncRNA MALAT1, miR-124-3p, and IGF2BP1 in PDLSCs' osteogenic differentiation.
Clinical Relevance: These findings enhance our understanding of lncRNA-mediated osteogenesis, offering potential therapeutic implications for periodontal tissue regeneration and the treatment of bone defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00784-024-05616-3 | DOI Listing |
Acta Diabetol
September 2025
Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, 88, College St. College Square, Kolkata, West Bengal, 700073, India.
Background And Aims: Gestational diabetes mellitus (GDM) is defined as glucose intolerance first identified during pregnancy that does not meet the criteria for overt diabetes. Its pathophysiology shares key features with type 2 diabetes mellitus (T2D), including insulin resistance and inflammation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are implicated in T2D.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Phytoveda Pvt. Ltd, Mumbai, 400022, India.
Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.
Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.
FEBS Lett
September 2025
Department of Translational Medicine, University of Ferrara, Italy.
This study, based on datasets from healthy tissues, lactating mammary epithelial cells, and breast cancer phenotypes, investigates mammary gland pathophysiology at single-cell resolution to identify key regulators in breast cancer development and to gain a deeper understanding of its biology and heterogeneity. We suggest that antileukoproteinase (SLPI) has prognostic value associated with metastasis in basal breast cancers. Our analysis highlights the similarity between triple-negative breast cancer cells and mature luminal lactocytes, which share active regulons (SOX2, MTHFD1, POU4F3, and ZNF32), suggesting conserved molecular mechanisms.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Obstetrics and Gynecology, Affiliated Hospital of Putian University;
Long non-coding RNA MALAT1 regulates epithelial-mesenchymal transition (EMT) and metastasis in epithelial ovarian cancer (EOC) through a competing endogenous RNA (ceRNA) mechanism involving miRNA modulation. This study aimed to elucidate the molecular pathway by which MALAT1 influences EMT and metastatic behavior via interaction with miR-200c-3p and SNAI2. MALAT1 expression was genetically manipulated in the EOC cell line SK-OV-3 by either overexpression or knockdown.
View Article and Find Full Text PDFMol Biotechnol
September 2025
Hypertension Center, Yan'an Hospital Affiliated to Kunming Medical University, Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, No.245 Renmin East Road, Kunming, 650000, Yunnan, China.
Background And Objective: Obstructive sleep apnea syndrome (OSAS) is a common sleep breathing disorder, and nonalcoholic fatty liver disease (NAFLD) may affect OSAS. This study aimed to explore the influence of exosomes (Exos) derived from liver cells in NAFLD on the progression of OSAS and the underlying molecular mechanisms.
Methods: C57BL/6J mice were exposed to chronic intermittent hypoxia (CIH) to establish an OSAS animal model, and SH-SY5Y cells treated with CIH were used as the in vitro cellular model.