Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Climate change is one of the most important drivers of ecosystem change, the global-scale impacts of which will intensify over the next 2 decades. Estimating the timing of unprecedented changes is not only challenging but is of great importance for the development of ecosystem conservation guidelines. Time of emergence (ToE) (point at which climate change can be differentiated from a previous climate), a widely applied concept in climatology studies, provides a robust but unexplored approach for assessing the risk of ecosystem collapse, as described by the C criterion of the International Union for Conservation of Nature's Red List of Ecosystems (RLE). We identified 3 main theoretical considerations of ToE for RLE assessment (degree of stability, multifactorial instead of one-dimensional analyses, and hallmarks of ecosystem collapse) and 4 sources of uncertainty when applying ToE methodology (intermodel spread, historical reference period, consensus among variables, and consideration of different scenarios), which aims to avoid misuse and errors while promoting a proper application of the framework by scientists and practitioners. The incorporation of ToE for the RLE assessments adds important information for conservation priority setting that allows prediction of changes within and beyond the time frames proposed by the RLE.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cobi.14247DOI Listing

Publication Analysis

Top Keywords

ecosystem collapse
12
climate change
8
toe rle
8
ecosystem
5
perspectives timing
4
timing ecosystem
4
collapse changing
4
climate
4
changing climate
4
climate climate
4

Similar Publications

Background: Critically ill patients, including those with systemic inflammatory response syndrome (SIRS) and sepsis, frequently exhibit gut microbiota disruption due to physiological stress and broad-spectrum antimicrobial therapy (AT). Although antibiotics are essential for controlling infection, they can destabilize the gut microbiota and may contribute to poorer clinical outcomes. The characterization of the gut microbiota of these patients may inform microbiota-based interventions to mitigate antibiotic-induced dysbiosis.

View Article and Find Full Text PDF

An iron-hard legacy? An analysis of metal accumulation and recovery over time in Brazil's Atlantic Rainforest plants after the Fundão Dam collapse.

J Hazard Mater

September 2025

Laboratório de Estudos Aplicados em Fisiologia Vegetal, Instituto Federal Goiano, Campus Rio Verde Rio Verde, GO 75.901-970, Brazil.

The study investigates the long-term effects of the 2015 Fundão tailings dam collapse in Brazil, focusing on metal accumulation in soil, plants and its implications for ecosystem recovery. The research, conducted between 2021 and 2024, analyzed 3311 individuals from areas directly and indirectly affected by the dam collapse, as well as from non-affected areas, integrating geochemical, spatial, and temporal analyses. Metal concentration and cellular damage were evaluated in roots and leaves.

View Article and Find Full Text PDF

Unlabelled: Bleeding and thromboembolic events (BTE) increase the mortality of COVID-19 acute respiratory distress syndrome (ARDS) treated with extracorporeal membrane oxygenation (ECMO). The current analysis aimed to assess frequency and determinants of BTE according to their location and severity in a retrospective analysis of the German ECMO COVID-19 registry. Logistic regression was applied to identify factors influencing ICU survival as well as variables associated with risks of BTE.

View Article and Find Full Text PDF

Microbial communities play a crucial role in the functioning of freshwater ecosystems but are continuously threatened by climate change and anthropogenic activities. Elevated temperatures and salinisation are particularly challenging for freshwater habitats, but little is known about how microbial communities respond to the simultaneous exposure to these stressors. Here, we use mesocosm experiments and amplicon sequencing data to investigate the responses of pelagic and benthic microbial communities to temperature and salinity increases, both individually and in combination.

View Article and Find Full Text PDF

The Sublethal Effects of Neonicotinoids on Honeybees.

Biology (Basel)

August 2025

College of Animal Science and Technology, Yangzhou University, 88 South University Rd, Yangzhou 225009, China.

Honeybees () are indispensable pollinators vital to global biodiversity, ecosystem stability, and agricultural productivity, and they promote over 35% of food crops and 75% of flowering plants. Yet, they are in unprecedented decline, partly as a result of neonicotinoid pesticide use elsewhere. These effects on honey bee health are synthesized in this paper through molecular, physiological, and behavioral data showing that sublethal effects of neonicotinoids impair honey bee health.

View Article and Find Full Text PDF